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Abstract. The construction of the effective Lagrangian relevant for the mesonic sector of QCD in the
large Nc limit meets with a few rather subtle problems. We thoroughly examine these and show that, if
the variables of the effective theory are chosen suitably, the known large Nc counting rules of QCD can
unambiguously be translated into corresponding counting rules for the effective coupling constants. As
an application, we demonstrate that the Kaplan–Manohar transformation is in conflict with these rules
and is suppressed to all orders in 1/Nc. The anomalous dimension of the axial singlet current generates
an additional complication: The corresponding external field undergoes nonmultiplicative renormalization.
As a consequence, the Wess–Zumino–Witten term, which accounts for the U(3)R×U(3)L anomalies in the
framework of the effective theory, contains pieces that depend on the running scale of QCD. The effect only
shows up at nonleading order in 1/Nc, but requires specific unnatural parity contributions in the effective
Lagrangian that restore renormalization group invariance.

1 Introduction

The low energy properties of QCD are governed by an ap-
proximate, spontaneously broken symmetry, which orig-
inates in the fact that three of the quarks happen to be
light. If mu,md,ms are turned off, the symmetry becomes
exact. The spectrum of the theory then contains eight
massless pseudoscalar mesons, the Goldstone bosons con-
nected with the spontaneous symmetry breakdown.
If the number of colors is taken large, the quark loop

graph which gives rise to the U(1) anomaly is suppressed
[1]. This implies that, in the limit Nc → ∞, the singlet ax-
ial current is also conserved: The theory in effect acquires
a higher degree of symmetry. Since the operator qq fails to
be invariant under the extra U(1) symmetry, the forma-
tion of a quark condensate, 〈0|qq|0〉 �= 0, implies that this
symmetry is also spontaneously broken [2]. The spectrum
of QCD, therefore, contains a ninth state, the η′, which
becomes massless if not only mu,md,ms are turned off,
but if in addition the number of colors is sent to infinity.
Chiral symmetry imposes strong constraints on the

properties of the Goldstone bosons. These may be worked
out in a systematic manner by means of the effective La-
grangian method, which describes the low energy struc-
ture of the theory in terms of an expansion in powers of
energies, momenta and quark masses [3,4]. The fact that,
in the large Nc limit, the η′ also plays the role of a Gold-
stone boson implies that the properties of this particle
are subject to analogous constraints, which may again be
worked out by means of a suitable effective Lagrangian.
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The main features of the effective theory relevant for
the meson sector of QCD in the large Nc limit were dis-
covered long ago [5]. The systematic analysis in the frame-
work of chiral perturbation theory was taken up in [4],
where the Green functions of QCD were studied by means
of a simultaneous expansion in powers of momenta, quark
masses and 1/Nc. A considerable amount of work concern-
ing the structure of QCD at large Nc has been carried
out since then [6–22] and quite a few phenomenological
applications of the 1/Nc expansion have appeared in the
literature. For a review of these, in particular also for a
discussion of the η–η′ mixing pattern, we refer to [23].
Moreover, the large Nc properties of the effective theory
relevant for the baryons were recently investigated in de-
tail [24].
In the present paper, we examine the foundations of

the effective theory in the sector with baryon number
B = 0 and show that this leads to new insights into the
low energy structure of QCD in the large Nc limit. The
framework is more complicated than in the case of Nc = 3,
because an additional low energy scale appears, related to
the mass of the η′. In order to firmly establish our claims,
we first need to put the effective theory on a solid basis
and demonstrate that the effective coupling constants nec-
essarily obey the counting rules indicated in [4] (Sects. 2–
12 and AppendixA). Using these, we then show that the
transformation introduced by Kaplan and Manohar is in
conflict with the large Nc properties of QCD: The param-
eter λ occurring in the transformation

mu → mu + λmdms (cyclic u → d → s → u), (1)

vanishes to all orders of the 1/Nc expansion (Sect. 13).
Next, we discuss the consequences of the fact that the di-
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mension of the singlet axial current is anomalous and de-
termine the corresponding dependence of the effective cou-
pling constants on the running scale of QCD (Sects. 14–
16). The matching between the effective theories relevant
for a finite and an infinite number of colors is worked out in
Sect. 18 and Appendix B. Finally, in Sects. 19–21 and Ap-
pendixC, we examine the modifications required to extend
the Wess–Zumino–Witten term from SU(3)R×SU(3)L to
U(3)R×U(3)L.
Some of the results described in the present paper were

reported earlier [20]. The application to the masses, de-
cay constants and photonic transitions of the pseudoscalar
mesons will be given elsewhere [25]. A further application
concerns the low energy properties of the correlation func-
tion

χ(q2) = −i
∫
dxeiq·x〈0|Tω(x)ω(0)|0〉,

ω =
1
16π2 trc GµνG̃

µν , (2)

where we have absorbed the coupling constant in the gluon
field. In particular, the manner in which the topological
susceptibility χ(0) and the derivative χ′(0) depend on the
light quark masses is quite remarkable [25,26].

2 Effective action

Our analysis is based on the known large Nc behavior of
QCD. We work with the effective action of this theory,
which describes the response of the system to the pertur-
bation generated by a set of external fields,

LQCD = L0
QCD +qγ

µ(vµ + γ5aµ)q −q(s− iγ5p)q − θω.(3)

The term L0
QCD describes the limit where the masses of

the three light quarks and the vacuum angle are set to
zero. The external fields vµ(x), aµ(x), s(x), p(x) repre-
sent hermitean 3 × 3 matrices in flavor space. The mass
matrix of the three light quarks is contained in the scalar
external field s(x). The vacuum angle θ(x) represents the
variable conjugate to the operator ω(x) specified in (2).
In Euclidean space, the integral

ν =
∫
dxω

is the winding number of the gluon field, so that ω(x) may
be viewed as the winding number density.
The effective action represents the logarithm of the

vacuum-to-vacuum transition amplitude,

eiSeff{v,a,s,p,θ} = 〈0 out|0 in〉v,a,s,p,θ. (4)

The coefficients of the expansion of Seff{v, a, s, p, θ} in the
external fields are the connected correlation functions of
the vector, axial, scalar and pseudoscalar quark currents
and of the winding number density, in the massless theory.
Lorentz invariance implies that these can be decomposed

into scalar functions, with coefficients that contain the ex-
ternal momenta and the tensors gµν , εµνρσ. In view of the
fact that the square of εµνρσ can be expressed in terms of
gµν , there are two categories of contributions: The natu-
ral parity part of the effective action, which collects the
pieces that do not contain the ε-tensor, and the unnatural
parity part, where this tensor occurs exactly once.
The consequences of the symmetry properties of QCD

for the natural parity part of the effective action are re-
markably simple: The Ward identities related to the con-
servation of the vector and axial currents imply that this
part of the effective action is invariant under chiral gauge
transformations,

r′
µ = VRrµV

†
R + iVR∂µV

†
R, l′µ = VLlµV

†
L + iVL∂µV

†
L

s′ + ip′ = VR(s+ ip)V
†
L ,

θ′ = θ + i ln detVR − i ln detVL, (5)

with rµ = vµ+ aµ, lµ = vµ − aµ and VR(x), VL(x) ∈ U(3).
Chiral U(1) transformations play an essential role for

the properties of the theory at large Nc. It is important
that our list of external fields includes a source for the sin-
glet axial current: The trace of the matrix aµ. The diver-
gence of this current contains an anomaly proportional to
ω. The above transformation law automatically accounts
for this term, through the shift in the vacuum angle that
is generated by a U(1) rotation.
The U(1) anomaly is not the only one relevant in our

context, but the remaining anomalies of the effective ac-
tion are independent of the interaction, so that they only
affect the unnatural parity part. We first investigate the
low energy structure of the natural parity part, which, as
stated above, is gauge invariant: Seff{v′, a′, s′, p′, θ′}nP =
Seff{v, a, s, p, θ}nP. The unnatural parity part – in partic-
ular, the Wess–Zumino–Witten term – only contributes at
nonleading orders of the low energy expansion and will be
discussed in detail later on.

3 QCD at large Nc

The well-known leading logarithmic formula

g2

(4π)2
=

1
β0 ln(µ2/Λ2

QCD)
, β0 =

1
3
(11Nc − 2Nf ), (6)

implies that the running coupling constant tends to zero
when Nc becomes large, g2 ∼ 1/Nc. At leading order of
the 1/Nc expansion, the Green functions are dominated by
those graphs that contain the smallest possible number of
quark loops. For the correlation functions of the quark
currents, graphs with one such loop generate the leading
contributions.
Consider the connected correlation function formed

with nj quark currents ji = qΓiq and nω winding num-
ber densities

Gnjnω = 〈0|Tj1(x1) · · · jnj (xnj )ω(y1) · · ·ω(ynω )|0〉c, (7)
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and denote the fraction due to graphs with ' quark loops
by G�

njnω
. The large Nc counting rules of perturbation

theory imply that this quantity represents a term of order

G�
njnω

= O(N2−�−nω
c ), ' = 0, 1, . . . (8)

The leading power is independent of the number nj of
quark currents, but decreases with nω. This implies that
the dependence of the effective action on the vacuum angle
is suppressed. The leading terms in the 1/Nc expansion of
the effective action may be characterized by the formula

Seff = N2
c S0{ϑ}+NcS1{v, a, s, p, ϑ}

+ S2{v, a, s, p, ϑ}+ . . . , (9)

where S� collects the contributions from graphs with '
quark loops and

ϑ ≡ θ

Nc
. (10)

Since the external fields v, a, s, p contained in S1 are at-
tached to one and the same quark loop, the expansion of
S1 in terms of these fields generates expressions that in-
volve a single trace over the flavor indices. Likewise, S2
represents a sum of contributions containing at most two
flavor traces, etc.
The dominating contributions to the effective action

arise from those graphs that do not involve quark lines.
Their sum represents the effective action of gluodynamics,
which only depends on the vacuum angle. The expansion
in powers of θ yields the connected correlation functions
of the field ω(x),

SGD
eff =

i
2!

∫
dx1dx2θ(x1)θ(x2)〈0|Tω(x1)ω(x2)|0〉GD

− i
4!

∫
dx1 . . .dx4θ(x1) · · · θ(x4)

× 〈0|Tω(x1) · · ·ω(x4)|0〉GD + . . .

The leading contribution in the 1/Nc expansion of the
effective action of gluodynamics coincides with the one
occurring in QCD,

SGD
eff = N2

c S0{ϑ}+O(Nc). (11)

In particular, the topological susceptibility of gluodynam-
ics1,

τGD ≡ 〈ν2〉GD

V
=

∫
dx〈0|Tω(x)ω(0)|0〉GD,

represents a term of order 1.

1 As written, the formula refers to Euclidean space. In
Minkowski space, the expression reads

τGD = −i
∫

dx〈0|Tω(x)ω(0)|0〉GD

Since gluodynamics possesses a mass gap (excitation
energy of the lightest glueball), the correlation functions
of ω decay on a scale of order ΛQCD. We are analyzing the
theory for external fields that vary slowly on this scale.
In that regime, we may expand the factor θ(x1) . . . θ(xn)
around the point x1 and express the functional through a
derivative expansion:

S0{ϑ} =
∫
dx {−e0(ϑ) + ∂µϑ∂

µϑe1(ϑ) + . . .} , (12)

where e0(ϑ), e1(ϑ), . . . are ordinary functions of a single
variable. The quantity N2

c e0(ϑ) represents the energy den-
sity of the vacuum for the case where, in the vicinity of
the point under consideration, the vacuum angle is taken
constant. The term N2

c ∂µϑ∂
µϑe1(ϑ) describes the change

in the energy density that arises if the vacuum angle has
a nonvanishing gradient there, etc.

4 Relation between QCD and gluodynamics

The large Nc counting rules imply that the quantities
e0(ϑ), e1(ϑ), . . ., which occur in the derivative expansion
(12) of the effective action of gluodynamics, depend on the
variables θ and Nc only through the ratio ϑ = θ/Nc. This
is puzzling, because the effective action of QCD is periodic
in θ with period 2π. The resolution of the paradox is given
in [27], where the relation between QCD and gluodynam-
ics is discussed in detail. The paradox is related to the
fact that the partition function ZGD involves a sum over
all gluon field configurations, while ZQCD only extends
over those on which fermions can live. In gluodynamics,
the sum over all configurations involves fractional winding
numbers – only the quantity Ncν must be an integer. In
the presence of fermions, however, the boundary condi-
tions imply that ν itself must be an integer. Even if their
mass is sent to infinity, the fermions thus exert a restric-
tion on the gluon configurations to be summed over: Only
configurations with integer winding number contribute.
This implies that, if either the number of colors or the
quark masses are sent to infinity, the QCD partition func-
tion does not in general tend to the partition function of
gluodynamics. Instead, it approaches the one obtained by
restricting the sum over all gluon configurations to those
with integer winding number, given by the projection

ẐGD(θ) =
1
Nc

Nc−1∑
k=0

ZGD(θ + 2πk),

which removes fractional winding numbers. While ZGD(θ)
is periodic in θ with period 2πNc, the projection ẐGD(θ)
has the 2π periodicity characteristic of ZQCD(θ). If θ is
taken constant and the four-dimensional volume V is
large, the partition function of gluodynamics is dominated
by the contribution from the ground state,

ZGD(θ) = exp{−V N2
c e0(ϑ)}. (13)
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For Nc → ∞, the partition function of QCD thus ap-
proaches the expression

ZQCD(θ) → 1
Nc

Nc−1∑
k=0

exp{−V N2
c e0(ϑk)},

ϑk =
θ + 2πk
Nc

. (14)

The large V limit picks out the term in the sum for which
e0(ϑk) is minimal. This means that, in the large Nc limit,
the vacuum energy density of QCD is determined by

ē0 = min
k

e0(ϑk).

Since a change in θ by 2π is equivalent to a shift in k, the
quantity ē0 is periodic with period 2π, while e0 is periodic
only with respect to θ → θ + 2πNc.
The distinction between the large Nc limit of QCD and

gluodynamics only matters for values of θ outside the in-
terval −π < θ < π. Within this region, we have ē0 = e0.
For all other values, ē0 represents the periodic continua-
tion from that interval. In our context, only the infinites-
imal neighborhood of the point θ = 0 matters – we are
using the external field θ(x) merely as a technical device
to analyze the properties of the Green functions for θ = 0.
In that context, we do not need to distinguish between e0
and ē0.
We add a remark concerning the topological suscepti-

bility. As discussed in [9], the correlation function
〈0|Tω(x)ω(0)|0〉 is too singular for the integral

χ(p2) = −i
∫
d4xeip·x〈0|Tω(x)ω(0)|0〉

to exist, in QCD as well as in gluodynamics. The corre-
sponding dispersive representation contains two subtrac-
tions,

χ(p2) = χ(0) + p2χ′(0) +
p4

π

∫ ∞

0

ds
s2(s− p2)

Imχ(s).

Accordingly, if the susceptibility is defined as an integral
over the correlation function, it is an ambiguous notion.
We instead identify it with the mean square winding num-
ber per unit volume, χ(0) = 〈ν2〉/V , which does not suffer
from such an ambiguity. In particular, if the large Nc limit
is taken at nonzero quark masses, we have2

τQCD = τGD +O(N−1
c ), τGD = O(1). (15)

The ambiguity in the first derivative remains – it reflects
the fact that, in the presence of a space-time-dependent
vacuum angle, the Lagrangian of QCD must be supple-
mented with a contact term ∝ DµθD

µθ. A renormaliza-
tion of the corresponding coupling constant is needed to
absorb the quadratic divergence in the correlation func-
tion 〈0|Tω(x)ω(0)|0〉. An analogous term also occurs at
the level of the effective theory.

2 The equality only holds if Ncm is large compared to the
scale of the theory. In the chiral limit, τQCD vanishes, so that
τQCD −→/ τGD

5 Massless quarks

In the present section, we briefly review some of the conse-
quences of the U(1) anomaly, because these play a central
role in the analysis of the low energy structure at large
Nc. For simplicity, we consider massless quarks, but leave
the number of flavors open. We normalize the singlet axial
current with

A0
µ = q̄

1
2
λ0γµγ5q =

1√
2Nf

q̄γµγ5q, (16)

where Nf is the number of flavors. The divergence of this
current is given by

∂µA0
µ =

√
2Nfω. (17)

We write the η′ matrix elements in the form

〈0|A0
µ|η′〉 = ipµF0, 〈0|ω|η′〉 =√

2Nf
τ

F0
.

The relation (17) then shows that the mass of the η′ is
given by

M2
η′ =

2Nfτ

F 2
0

, (18)

and the Ward identities obeyed by the correlation func-
tions of A0

µ and ω lead to the representation

i
∫
dxeip·x〈0|TA0

µ(x)A
0
ν(0)|0〉 =

pµpνF
2
0

M2
η′ − p2

+gµνF 2
0 + gµνR0(p2) + (pµpν − gµνp

2)R1(p2),∫
dxeip·x〈0|TA0

µ(x)ω(0)|0〉 =
pµ

√
2Nfτ

M2
η′ − p2

+
1√
2Nf

pµR0(p2),

1
i

∫
dxeip·x〈0|Tω(x)ω(0)|0〉 = − 2Nfτ

2

F 2
0 (M

2
η′ − p2)

+τ − 1
2Nf

p2R0(p2). (19)

The largeNc counting rules of Sect. 3 imply that the corre-
lation function of the axial current is a quantity of O(Nc).
For the pole term contained therein to be consistent with
this, the decay constant F0 must be of O(N

1/2
c ). Simi-

larly, for the pole term in the correlation function formed
with A0

µ(x) and ω(x) not to generate a contribution that
diverges for Nc → ∞, the constant τ must represent a
quantity of O(1). In the large Nc limit, the pole term in
〈0|Tω(x)ω(0)|0〉 therefore disappears, as it should: That
function must approach the correlation function of glu-
odynamics. In this theory, the mass gap persists when
Nc → ∞, so that the expansion in powers of the momen-
tum is an ordinary Taylor series, which starts with the
topological susceptibility,

τ = τGD +O(1/Nc), R0(p2) = O(1). (20)
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In QCD, the low energy structure is more intricate, partic-
ularly when Nc becomes large. In addition to the N2

f − 1
Goldstone bosons generated by the spontaneous break-
down of SU(Nf )R×SU(Nf )L, the spectrum contains a fur-
ther state that also becomes massless in the limitNc → ∞.
At large Nc, the low energy structure of the theory con-
tains a new scale, Mη′ , which is independent of the quark
masses and of the intrinsic scale of QCD. The magnitude
of the pole terms in the above correlation functions, for
instance, is sensitive to the relative size of the momentum
p compared to this scale.

6 Simultaneous expansion in p and 1/Nc

In order to analyze the behavior in the region where the
momenta are of the size of Mη′ – in particular, on the
mass shell of the η′ – we need to treat both p and Mη′ as
small quantities. This can be done in a controlled manner
in the framework of a simultaneous expansion in powers
of momenta and 1/Nc, ordering the series with [14]

p = O(
√
δ), 1/Nc = O(δ). (21)

In that bookkeeping, the denominator associated with η′
exchange represents a small quantity of O(δ), so that the
corresponding low energy singularities are enhanced. In
the preceding section, we considered the 1/Nc expansion
at fixed p – as noted there, the pole term in the correla-
tion function of ω(x) then represents a subleading contri-
bution. In the simultaneous expansion we are considering
now, however, this term is of the same algebraic order as
the one from the topological susceptibility of gluodynam-
ics. Moreover, the functions R0(p2) and R1(p2) are now
expanded in powers of p. Since the leading terms are of
order R0(0) = O(1), R1(0) = O(Nc) = O(1/δ), the contri-
butions from these functions are suppressed by one power
of δ as compared to the pole terms: For massless quarks,
the leading term in the δ expansion of the three correla-
tion functions considered in the preceding section is ob-
tained by simply dropping the contributions from R0(p2)
and R1(p2) and is thus fully determined by the low energy
constants τGD and F0.
The result may be converted into a simple statement

about the effective action. The correlation functions under
discussion specify the part of Seff that is bilinear in the
external fields a0µ(x) and θ(x). At leading order in the δ
expansion, this part only involves the constants τGD and
F0. The explicit expression reads

Seff =
1
2

∫
dxdyf(x)f(y)∆η′(x− y)

+
1
2

∫
dx{F 2

0 a
0
µ(x)a

0µ(x)− τGDθ(x)2}+ . . . ,

where f(x) is a linear combination of the external fields
∂µa0µ(x) and θ(x), and ∆η′(x) is the propagator of the η′:

f(x) = F0∂
µa0µ(x)−

√
2Nf

τGD

F0
θ(x),

∆η′(x) =
1

(2π)4

∫
dp

e−ip·x

M2
η′ − p2 − iε .

The expression represents the classical action of a free
scalar field ψ in the presence of external fields. The rele-
vant Lagrangian is given by

Lψ = F 2
0

4Nf
DµψD

µψ − τGD

2
(ψ + θ)2,

Dµψ = ∂µψ − 2〈aµ〉, (22)

where 〈aµ〉 = a0µ((1/2)Nf )1/2 is the trace of the axial ex-
ternal field. If we assign the fields the weight

θ(x) = O(1), aµ(x) = O(
√
δ),

ψ(x) = O(1), (23)

all of the contributions occurring in this Lagrangian rep-
resent terms of O(1).
Above, we determined the effective Lagrangian from

the properties of the correlation functions. We could in-
stead have investigated the general expression permitted
by the symmetries of the theory – indeed, we will make
use of that method to work out the higher order terms
in the δ expansion. At leading order, however, that ap-
proach leads to the following problem, which arises from
the presence of a new low energy scale and does not occur
in the effective theory relevant for finite Nc. Let us switch
the external fields off. Up to total derivatives, the general
Lorentz invariant expression quadratic in ψ is of the form

L =
∞∑
n=0

cnψ
nψ + . . .

A priori, it is not legitimate to dismiss terms with more
than two derivatives: If the coefficient cn is of order Nn

c ,
then it does contribute at the leading order of the δ ex-
pansion. There is a good reason, however, why such terms
do not occur. The point is that the propagator of the field
ψ is given by the inverse of the function

∑
n cn(−p2)n.

Unless this expression is a second order polynomial in p,
the propagator will thus have more than one zero. With
cn ∝ Nn

c , all of these occur in the region where p2 is
small, of order 1/Nc – the spectrum of the theory would
thus contain more than one particle that
(i) has the quantum numbers of the η′ and
(ii) becomes massless in the large Nc limit. Our explicit
calculation of the pole terms in the correlation functions
relies on the very plausible assumption that only one such
particle occurs – this is why higher derivative terms do
not occur at leading order in δ.

7 Effective theory in the U(1) sector

The result obtained in the preceding section shows that –
as far as the two-point functions of the operators A0

µ(x)
and ω(x) are concerned, and for massless quarks – the
leading terms in the simultaneous expansion in powers
of momenta and 1/Nc can be characterized by means of
a remarkably simple effective field theory. It involves a
single dynamical variable ψ(x), describing the degrees of
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freedom of the η′. Before generalizing this result to the
other correlation functions and to nonzero quark masses,
we add a few remarks about the structure of the effective
Lagrangian obtained above.
First, we note that the Lagrangian (22) is manifestly

invariant under local U(Nf )R×U(Nf )L rotations,
provided the dynamical variable is transformed according
to

ψ′ = ψ − i ln detVR + i ln detVL. (24)

This ensures that the sum ψ + θ is invariant, so that the
same is true of the term proportional to τGD. Since the
trace of aµ transforms like an Abelian gauge field, the
term Dµψ also represents an invariant.
Next, we observe that the choice of the dynamical vari-

able is not unique. The normalization of the field ψ, for
instance, can be chosen such that the kinetic term takes
the standard form (1/2)∂µψ∂µψ (the reason for not doing
so is that this would ruin the simplicity of the transfor-
mation law (24)). More generally, the variable ψ can be
replaced by a function thereof, which moreover may in-
volve the derivatives of ψ and the external fields – the
result for the action remains the same.
This implies that the effective Lagrangian is not

unique. An infinitesimal change of variables generates a
term in the Lagrangian that is proportional to the equa-
tion of motion. Conversely, contributions proportional to
the equation of motion may always be removed from the
Lagrangian by performing a suitable transformation of
variables. This freedom is characteristic of effective the-
ories, where the dynamical fields represent mere variables
of integration in the path integral and are not of physi-
cal interest. The transformation ψ → ψ + κ · (ψ + θ), for
instance, preserves the transformation law (24), but takes
the Lagrangian into

Lψ ′ =
F 2

0

4Nf

{
(1 + κ)2Dψ2

+ 2κ(1 + κ)DψDθ + κ2Dθ2
}

− τGD

2
(1 + κ)2(ψ + θ)2,

with Dµθ = ∂µθ + 2〈aµ〉. For this choice of variables,
the Lagrangian contains additional terms, proportional to
DµψD

µθ and DµθD
µθ, respectively. Note also that the

coefficient of the one ∝ (ψ + θ)2 is then not given by the
topological susceptibility of gluodynamics when Nc be-
comes large. In the following we stick to the form of the
effective Lagrangian in (22).
The low energy analysis relies on the perturbative ex-

pansion of the effective theory. At leading order, the ef-
fective action is given by the classical action, which col-
lects the contributions from the tree graphs. The quan-
tum fluctuations of the effective field are treated as cor-
rections. In the standard framework, where the η′ does
not occur among the effective degrees of freedom, the
size of the quantum fluctuations is controlled by the ex-
ternal momenta and by the quark masses m = O(p2):
Graphs involving ' loops are suppressed by a factor of or-

der p2�. In the extended framework, however, these fluc-
tuations involve three scales, the external momenta, the
quark masses and the mass of the η′. Their magnitude
can be controlled algebraically only if Mη′ is also treated
as small. For the consistency of the effective framework,
it is essential that the number of colors provides us with
an algebraic parameter that controls the size of Mη′ =
O(1/N1/2

c ). In fact, we will see that in the simultaneous
expansion in powers of momenta, quark masses and 1/Nc,
the quantum fluctuations only start contributing at order
δ2.
The problems arising if Mη′ is not treated as a small

parameter can be seen already at tree level, where the ef-
fective action is obtained by evaluating the classical action
at its extremum. There, the field ψ(x) obeys the equa-
tion of motion, which is of the form ψ + M2

η′ψ = f .
At leading order in an expansion in powers of p at fixed
M2
η′ , this equation reduces to ψ = f/M2

η′ + . . . The ki-
netic term then only occurs as a correction. In the loop
integrals, the p expansion replaces the propagators by the
series (M2

η′ − p2)−1 = 1/M2
η′ + . . . It is clear that those

integrals cannot be analyzed in this manner.

8 Extension to U(3)

We now discuss the extension required to analyze the full
effective action and set Nf = 3. The dynamical variables
of the effective theory must then account for all parti-
cles that become massless in the limit Nc → ∞, m → 0.
In that limit, the symmetry group of the Hamiltonian
is G = U(3)R × U(3)L. We assume that this symme-
try is spontaneously broken and that the ground state
yields a nonzero expectation value for the quark conden-
sate 〈0|qLqR|0〉. While the subgroup generated by the vec-
tor charges remains intact [28], the U(1)A rotations gen-
erated by the singlet axial charge are spontaneously bro-
ken: The operator qLqR transforms in a nontrivial man-
ner under these. Accordingly, the ground state is symmet-
ric only under the subgroup H = U(3)V . The dynamical
variables of the effective theory live on the coset space
G/H = U(3), so that we may collect the effective fields in
a matrix U(x) ∈ U(3). The nine parameters of the coset
space correspond to the nine massless pseudoscalar fields
needed to describe the Goldstone bosons. The extension
from the standard framework, where the effective field is
an element of SU(3), to the one we are considering here
shows up in the phase of the determinant

detU(x) = eiψ(x). (25)

The field ψ(x) describes the η′. Under the action of the
symmetry group, U(x) transforms with

U ′(x) = VR(x)U(x)V
†
L (x). (26)

The transformation law (24) represents a special case of
this formula, obtained by comparing the determinants of
the left and right hand sides. In canonical coordinates, the
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matrix U(x) is parametrized in terms of nine pseudoscalar
fields φ0(x), . . ., φ8(x):

U(x) = exp i
8∑

k=0

λkφ
k(x), (27)

where λ1, . . . , λ8 are the Gell-Mann matrices and λ0 =
(2/3)1/2. In these coordinates, the singlet field ψ(x) is rep-
resented by ψ(x) = 61/2φ0(x).
The calculation described in Sect. 6 only concerns the

part of the effective Lagrangian that governs the dynamics
of the η′ field ψ(x). The part relevant for the dynamics of
the pseudoscalar octet may, however, be worked out in the
same manner. If the quark masses are set equal to zero,
the eightfold way is an exact symmetry, so that there is
no mixing between octet and singlet. The leading term in
the δ expansion of the correlation function of the octet
components of the axial current, 〈0|TAiµ(x)Akν(0)|0〉, is
obtained along the same lines as in the case of the singlet
component. The result may again be characterized by an
effective Lagrangian that is quadratic in the corresponding
dynamical variables – the fields φk(x) in this case:

Lφ = 12F
2

8∑
k=1

(∂µφk − akµ)(∂
µφk − aµk). (28)

In the chiral limit, which we are considering, a mass term
does not occur here: The pseudoscalar octet is then strictly
massless. The relevant part of the effective Lagrangian
contains a single effective coupling constant, related to
the matrix element

〈0|Aiµ|πk〉 = ipµδikF.
In fact, in the large Nc limit, the correlation functions of
the singlet and octet currents become identical: The ratio
F0/F tends to 1. Accordingly, the sum L = Lψ+Lφ takes
the simple form

L = 1
2
F 2

8∑
k=0

(∂µφk − akµ)(∂
µφk − aµk)

− τGD

2
(ψ + θ)2. (29)

9 Chiral symmetry

There is an essential difference between the Lagrangians
relevant for the octet and singlet degrees of freedom: While
Lψ is invariant under chiral transformations, Lφ is not.
The difference arises from the fact that the part of the
chiral group that matters for Lψ is the Abelian U(1) fac-
tor, while the one that counts for Lφ is a nonabelian group,
SU(3)R×SU(3)L. This implies that the pseudoscalar octet
mesons necessarily interact among themselves: The Ward
identities for the various Green functions intertwine these
with one another, so that a nonvanishing two-point func-
tion can occur only together with Green functions con-
taining more than two currents. In contrast to the one in

(22), the Lagrangians in (28) and (29) cannot stand by
themselves.
The interaction terms required by chiral symmetry are

well known. They are generated automatically, if the term
∂µφ

k − akµ is replaced by the covariant derivative of the
effective field. For the matrix U(x) that includes the η′,
the covariant derivative is given by

DµU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ). (30)

Under chiral rotations, this object transforms in the same
manner as the field U(x) itself. The expansion in powers
of the meson fields thus starts with

DµU = i
8∑

k=0

(∂µφk − akµ)λ
k + . . .

Hence, the Lagrangian (29) represents the quadratic term
in the chirally invariant expression (as usual, 〈A〉 stands
for the trace of A)

L = 1
4
F 2〈DµU

†DµU〉 − τGD

2
(ψ + θ)2. (31)

The above calculation demonstrates that this Lagrangian
correctly characterizes the two-point functions formed
with the winding number density and the singlet and octet
components of the axial current – at leading order of the δ
expansion and in the chiral limit. In fact, in this limit, the
Lagrangian (31) properly accounts for the leading contri-
butions in the δ expansion of all of the Green functions
that can be formed with these operators. For a proof we
refer to Appendix A.
We may decompose the effective field into a part that

only contains the η′ and a part that describes the pseu-
doscalar octet:

U = e(i/3)ψÛ , detÛ = 1. (32)

It is convenient to define the covariant derivative of Û ∈
SU(3) by

DµÛ = ∂µÛ − i(v̂µ + âµ)Û + iÛ(v̂µ − âµ), (33)

where v̂µ, âµ are the traceless parts of vµ, aµ. By construc-
tion, this quantity obeys 〈Û†DµÛ〉 = 0, to be compared
with 〈U†DµU〉 = iDµψ for U ∈ U(3). The relation be-
tween the two derivatives,

DµU = e(i/3)ψ
{
DµÛ +

i
3
DµψÛ

}
,

implies the identity

〈DµU
†DµU〉 = 〈DµÛ

†DµÛ〉+ 1
3
DµψD

µψ,

which splits the above Lagrangian into an SU(3) part that
exclusively involves the Goldstone boson octet and a U(1)
part that only contains the singlet meson field ψ(x). The
singlet axial field and the vacuum angle only occur in the
U(1) part, while the vector and axial octets only appear
in the SU(3) part – the singlet vector field does not enter
at all. For massless quarks, the octet and singlet sectors
thus separate like oil and water.
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10 Full effective Lagrangian

For nonzero quark masses, the properties of the theory
may be analyzed in terms of an expansion in powers of
these, so that we are then dealing with a triple expansion
in
(i) the number of derivatives,
(ii) powers of quark masses and
(iii) powers of 1/Nc.
It is convenient to generalize the ordering (21) used

for the massless theory by counting the quark masses as
quantities of order δ:

∂µ = O(
√
δ), m = O(δ), 1/Nc = O(δ). (34)

In this bookkeeping, the vacuum angle and the effective
fields U(x), ψ(x) are treated as quantities of order 1, while
the external fields vµ(x), aµ(x), s(x), p(x) count as small
perturbations of the same order as the derivatives and the
quark masses, respectively:

(U,ψ, θ) = O(1), (vµ, aµ) = O(
√
δ),

(s, p) = O(δ). (35)

Collecting the contributions of order 1, δ, δ2, . . ., the full
effective Lagrangian takes the form (see AppendixA)

Leff = L(0) + L(1) + L(2) + . . . (36)

The individual terms only contain a finite number of ef-
fective coupling constants. In particular, the leading term
L(0) = O(δ0) exclusively involves the coupling constants
F,B and τ . Replacing the external fields s(x) and p(x) by

χ(x) ≡ 2B {s(x) + ip(x)} , (37)

the explicit expression reads

L(0) =
1
4
F 2〈DµU

†DµU〉+ 1
4
F 2〈U†χ+ χ†U〉

− 1
2
τ(ψ + θ)2. (38)

Note that L(0) contains vertices of the type F 2∂φ∂φφn−2,
which represent interactions among the pseudoscalar
mesons. The corresponding tree graph contribution to the
scattering amplitude describes a collision with altogether
n particles in the initial and final states. In the large
Nc limit, the contribution disappears, in proportion to
F 2−n ∝ N

1−n/2
c , in accordance with the general count-

ing of powers for the scattering amplitude given in Ap-
pendix A. When Nc is sent to infinity, all of the bound
states become free particles of zero width. The larger the
number of particles participating in the reaction, the
smaller the interaction among these.
In the large Nc limit, diagrams with a single quark

loop dominate, so that only contributions with a single
trace over flavor matrices occur (OZI rule). This property
entails that the two-point function of the singlet current
approaches the one of the octet components, in particular

F0/F → 1. In general, however, the matrix elements of
the singlet and octet components are different, even if Nc

is taken large. In particular, the OZI rule does not imply
that the four-point function of the singlet axial current ap-
proaches the one of the octet components – in fact, it does
not: The latter contains a four-fold pole, whose residue is
proportional to the scattering amplitude. The term repre-
sents a contribution of order Nc, which at low energies is
fully determined by the pion decay constant. An analogous
contribution to the four-point function of the singlet axial
current does not occur, because the scattering amplitude
η′η′ → η′η′ does not pick up a term proportional to 1/F 2:
Crossing symmetry implies that, for massless quarks, the
coefficient is proportional to s+ t+u = 4M2

η′ = O(1/Nc).
The term L(1) = O(δ) contains the contributions of

O(Ncp
4), O(p2) and O(1/Nc). The first may be copied

from the SU(3) Lagrangian, simply dropping those cou-
pling constants that violate the OZI rule. Concerning the
remaining contributions, the terms that are of the same
structure as those in L(0) may be absorbed in the coupling
constants F,B, τ (note that the coefficient of the term pro-
portional to (ψ+θ)2 then differs from the topological sus-
ceptibility of gluodynamics – we need to distinguish the
coupling constant τ from τGD). With a suitable choice of
the dynamical variables, the explicit expression for L(1)

can be brought to the form

L(1) = L2〈DµU
†DνUD

µU†DνU〉
+ (2L2 + L3)〈DµU

†DµUDνU
†DνU〉

+ L5〈DµU
†DµU(U†χ+ χ†U)〉

+ L8〈U†χU†χ+ χ†Uχ†U〉
− iL9〈RµνDµUDνU† + LµνD

µU†DνU〉
+ L10〈RµνULµνU†〉+ 1

12
F 2Λ1DµψD

µψ

− 1
12
F 2Λ2i(ψ + θ)〈U†χ− χ†U〉

+
1
12
H0DµθD

µθ +H1〈RµνRµν + LµνL
µν〉

+ H2〈χ†χ〉. (39)

The covariant derivatives and the field strength tensors
are defined by

DµU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ),
Dµψ = ∂µψ − 2〈aµ〉, Dµθ = ∂µθ + 2〈aµ〉,
Rµν = ∂µrν − ∂νrµ − i[rµ, rν ],
Lµν = ∂µlν − ∂ν lµ − i[lµ, lν ], (40)

where rµ = vµ+aµ and lµ = vµ−aµ. The somewhat queer
numbering of the coupling constants arises because we re-
tain the notation introduced in [4] to denote the couplings
at first nonleading order. The SU(3) Lagrangian given in
that reference contains three independent terms with four
derivatives, involving the coupling constants L1, L2 and
L3, respectively. For Nc → ∞, all of these are of order Nc,
but the OZI rule suppresses the combination 2L1−L2. The
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above expression for those terms that involve four deriva-
tives is obtained from the Lagrangian of [4] by replac-
ing the constant L1 by (1/2)L2. The counting rules imply
that the coupling constants L2, L3, L5, L8, L9, L10 repre-
sent quantities of O(Nc), while Λ1, Λ2 are of O(1/Nc).
Concerning the contact terms, H0 is of order 1, while H1
and H2 are of O(Nc).
The number of independent coupling constants enter-

ing the low energy representation of the effective action to
first nonleading order is roughly the same as for the SU(3)
Lagrangian: While the four parameters L1 − (1/2)L2, L4,
L6, L7 are relegated to next-to-next-to leading order, three
new coupling constants appear: τ, Λ1, Λ2. The framework
allows us to also evaluate the correlation functions formed
with the operators A0

µ and ω, while the Lagrangian of [4]
accounts for these only at leading order. A further virtue
of a Lagrangian that explicitly includes the degrees of free-
dom of the η′ is that it equips the contributions from η′
exchange with the proper denominator and, for instance,
distinguishes the factor 1/M2

η′ from 1/(M2
η′ −M2

η ). In view
of M2

η/M
2
η′ = 0.33, this distinction is numerically quite

significant. On the other hand, the above framework re-
tains only the next-to-leading terms of the 1/Nc expan-
sion. In Sects. 17 and 18, we will consider those contribu-
tions of next-to-next-to leading order that are needed to
fully match the SU(3) and U(3) theories on their common
domain of validity.

11 Potentials

At this point, we establish contact with the notation intro-
duced in [4], where the vertices of the effective Lagrangian
are ordered in the same fashion as for the case of SU(3),
that is by simply counting powers of momenta and quark
masses. We refer to that ordering as the p expansion.
Ordering the various couplings in this manner, the La-
grangian takes the form

Leff = −V0 + V1〈DµU
†DµU〉+ V2〈U†χ〉+ V �

2 〈χ†U〉
+ V3DµψD

µψ + V4DµψD
µθ

+ V5DµθD
µθ +O(p4). (41)

The leading term V0 contains those vertices that do not in-
volve derivatives or quark mass factors. Chiral symmetry
implies that the matrix U cannot appear without deriva-
tives, but it does not protect the combination ψ + θ of
the singlet field and the vacuum angle. There are vertices
without derivatives containing an arbitrary power of this
combination. Their collection V0 represents a function of
the variable ψ+ θ. The same applies for the coefficients of
those contributions that do involve quark mass factors or
derivatives. The effective coupling constants are the co-
efficients Vn,k occurring in their expansion in powers of
ψ + θ,

Vn =
∞∑
k=0

Vn,k(ψ + θ)k.

The functions Vn(ψ+ θ) may be viewed as potentials that
describe the dynamics in the U(1) sector, with V0 as the
most important one. The counting rules established in Ap-
pendix A imply that – for a suitable choice of the dynam-
ical variables – we have

V0,k = O(N2−k
c ), {V1,k, V2,k} = O(N1−k

c ),

{V3,k, V4,k, V5,k} = O(N−k
c ).

Indeed, these rules were written down already in [4]. The
detailed analysis described in the present paper merely
fills a gap: The argumentation given in that reference is
incomplete, because it does not take the ambiguities into
account that arise from the freedom in the choice of the
dynamical variables. As demonstrated in the Appendix,
these ambiguities are in one-to-one correspondence with
those occurring in the off-shell extrapolation of the matrix
elements. What we have shown now is that there exists a
class of such extrapolations, for which the above counting
rules for the effective coupling constants strictly follow
from those for the correlation functions. We will make
use of this result when analyzing the Kaplan–Manohar
transformation.
At leading order, the freedom in the choice of the

dynamical variables is hidden in the manner in which
the field U(x) is parametrized in terms of the variables
φ0(x), . . . , φ8(x) – that is in the choice of the coordinates
on the group U(3). As we are expressing the Lagrangian
in terms of U(x), it is irrelevant how these coordinates are
chosen. At first nonleading order, however, the ambiguities
inherent in the choice of the dynamical variables do show
up and the Lagrangian takes a unique form only if that
freedom is fixed. As discussed in Appendix A, this can be
done by eliminating invariants that vanish if the field U(x)
obeys the equation of motion associated with L(0). The
representation for L(1) in (39) fully exploits this freedom.
The eleven couplings occurring there are both complete
and independent: With a suitable change of variables, all
of the invariants that can be built up to and including
O(δ) reduce to a linear combination of those listed and,
conversely, the choice made fixes the dynamical variables –
up to transformations of O(δ2). In the notation introduced
above, the choice of variables made in (39) corresponds to
V4 = 0, as far as the terms of O(δ) are concerned. One
readily checks that a suitable change of variables of the
type U → eifU , where f only depends on ψ + θ, removes
V4 to all orders and thereby fixes the dynamical variables
up to transformations of O(p2).
At order p4, the natural parity part of the effective La-

grangian contains altogether 52 potentials. For an explicit
representation, we refer to [15]. The potentials relevant for
the unnatural parity part are given explicitly in Sect. 21.
In connection with the Kaplan–Manohar transformation,
the symmetry breaking terms of order m2 are of special
interest. These are of the same structure as in the case of
the SU(3) Lagrangian:

Lχ2 = W1〈U†χU†χ〉+W �
1 〈χ†Uχ†U〉+W2〈U†χ〉2

+ W �
2 〈χ†U〉2 +W3〈U†χ〉〈χ†U〉+W4〈χ†χ〉. (42)
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The only difference is that the coupling constants L6, L7,
L8 and H2 are replaced by the potentials W1, . . . ,W4,
which depend on the variable ψ + θ.
In the 1/Nc expansion, most of the potentials occurring

in L2 start contributing only at next-to-next-to leading
order: If only terms of order δ are retained, the effective
Lagrangian reduces to the explicit expression in (39).

12 Dependence on the vacuum angle θ

Since the dependence of the various quantities on the vac-
uum angle is rather peculiar, particularly in the large Nc

limit, we now briefly discuss this issue. Throughout this
section we restrict ourselves to a constant value of the ex-
ternal field θ(x) = θ, turn the pseudoscalar field p(x) off
and identify the scalar one with the quark mass matrix,
s(x) = m.
The transformation law (5) shows that a suitable

global U(1) transformation, for instance VR = e(i/3)θ1,
VL = 1, removes the vacuum angle. The external vector
and axial fields stay put, but the quark mass matrix un-
dergoes a change: m → mθ. The invariance of the effective
action thus implies

S{v, a, θ,m} = S{v, a, 0,mθ}, mθ = e(i/3)θm, (43)

the familiar statement that the vacuum angle only en-
ters in combination with the quark mass matrix: Only the
phase argdetmθ = argdetm+ θ matters.
In the effective Lagrangian, however, the vacuum an-

gle does not enter in this combination. Also, according
to (26), the effective field undergoes a change under the
above transformation: U → e(i/3)θU . We need to be care-
ful when performing finite transformations on the effective
field. In the construction of the effective Lagrangian, only
the series in powers of both the external fields and the dy-
namical variables φ(x) were considered. If we now take a
vacuum angle of finite size, we are summing the expansion
in powers of θ to all orders. This may lead to ambiguities.
The relation detU = eiψ, for instance, can be solved for ψ
only up to a multiple of 2π. This means that the decom-
position in (32) is unique only in the vicinity of U = 1.
Since the effective theory is evaluated perturbatively,

its properties are governed by the tree graphs, that is
by those of the corresponding classical field theory. In
this framework, ambiguities of the type just mentioned
are avoided if ψ is replaced by the gauge invariant field
ψ̄ = ψ + θ, collecting the remaining dynamical variables
in the matrix Ū :

U = e(i/3)ψ̄Ū , ψ̄ = ψ + θ, detŪ = e−iθ. (44)

It is convenient to define the covariant derivative of Ū by

DµŪ = ∂µŪ − i(vµ + āµ)Ū + iŪ(vµ − āµ), (45)

āµ = aµ − 1
3
〈aµ〉 − 1

6
∂µθ = aµ − 1

6
Dµθ,

so that 〈Ū†DµŪ〉 = 0. In this notation, the derivative of
U reads

DµU = e(i/3)ψ̄
{
DµŪ +

i
3
(∂µψ̄ −Dµθ)Ū

}
, (46)

and the leading term in the effective Lagrangian takes the
form

L(0) =
1
4
F 2〈DµŪ

†DµŪ + e−(i/3)ψ̄Ū†χ+ e(i/3)ψ̄χ†Ū〉

+
1
12
F 2(∂µψ̄ −Dµθ)2 − 1

2
τψ̄2.

The equation of motion belonging to this Lagrangian un-
ambiguously determines the classical solution ψ̄cl, Ūcl in
terms of the external fields. If these are subject to a gauge
transformation, ψ̄cl remains invariant, while Ūcl goes into
VRŪclV

†
L , even if the angles of the transformation are taken

large. This also holds if the higher order contributions to
the effective Lagrangian are accounted for. In particular,
under the global U(1) rotation considered above, which
maps the vacuum angle into zero, the classical solution
does transform with Ūcl → e(i/3)θŪcl.
At leading order of the perturbative expansion, the

effective action is given by the value of the classical ac-
tion at the extremum. Hence it does obey the relation
(43), also if θ is taken large. Note that, once the dynam-
ical variables of the effective theory are identified with ψ̄
and Ū , the effective Lagrangian contains the external field
θ(x) exclusively through the derivatives thereof – a con-
stant vacuum angle then exclusively manifests itself via
the constraint detŪ = e−iθ. This also implies that the
effective theory automatically generates an effective ac-
tion that is periodic in the vacuum angle: The only place
where a constant shift in that angle shows up is through
the factor e−iθ, which remains the same if θ is replaced by
θ + 2π.
The dependence on θ disappears in the large Nc limit,

both in gluodynamics and in QCD. The vacuum energy
density, for instance, represents a term of O(N2

c ), but
a dependence on θ only shows up at O(1), through the
susceptibility term. The origin of this suppression can
immediately be seen in the structure of the QCD La-
grangian: The properties of the theory are governed by the
term g−2GµνG

µν , while the vacuum angle enters through
θGµνG̃

µν . In the large Nc limit, the term containing the
vacuum angle is smaller than the one that determines the
dynamics by the factor g2θ = O(1/Nc).
Gauge invariance implies that, in the effective

Lagrangian, the vacuum angle only appears in the combi-
nation ψ̄ = ψ + θ, together with the singlet field. In par-
ticular, the term proportional to θ2 in the vacuum energy
density is converted into one proportional to ψ̄2 and thus
equips the η′ with a mass. That mass disappears in the
large Nc limit, because the θ dependence of the vacuum
energy of gluodynamics is suppressed.
Small quark masses also suppress the dependence on

θ. If the determinant of the quark mass matrix vanishes,
the Green functions of the vector and axial currents and
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hence also the scattering matrix elements even become en-
tirely independent of θ. Concerning the θ dependence, the
quark masses – the parameters that break chiral symme-
try – thus play a similar role as the parameter 1/Nc that
measures the breaking of the OZI rule.
As an immediate corollary of the fact that, in the large

Nc limit, the dependence on the vacuum angle is sup-
pressed, the potentials reduce to constants in that limit.
More generally, if the expansion in 1/Nc is cut off at a
finite order, the potentials are replaced by polynomials in
ψ̄.

13 Kaplan–Manohar transformation
at large Nc

As pointed out by Kaplan and Manohar [29], the stan-
dard SU(3) Lagrangian is invariant under the transfor-
mation in (1), provided the effective coupling constants
L6, L7 and L8 are subject to a corresponding change. In
that framework, the vacuum angle is set to zero. The
transformation can, however, be generalized to allow for
nonzero values of θ(x). To ensure that the modified mass
matrix has the same transformation properties as the orig-
inal one also with respect to chiral U(1) rotations, it suf-
fices to equip the transformation law for the scalar and
pseudoscalar external fields with a factor of e−iθ. With
m(x) = s(x) + ip(x), the Kaplan–Manohar transforma-
tion then takes the form

m → m+ λe−iθm†−1 detm†. (47)

In the present context, it is convenient to order the ver-
tices with the p expansion, using the representation of the
effective Lagrangian in (41). At order p2, the scalar and
pseudoscalar external fields only enter trough the term
V2〈U†χ〉 and its complex conjugate, with χ = 2Bm. Un-
der the above operation, this term picks up a contribution
proportional to 〈U†χ†−1〉detχ†. The expression may be
simplified by applying the identity

〈C−1〉 = 〈C〉2 − 〈C2〉
2 detC

to the matrix C = χ†U . In view of detU = eiψ, the trans-
formation then yields

V2〈U†χ〉 → V2〈U†χ〉
+

λ

4B
V2e−i(ψ+θ) {〈χ†U〉2 − 〈χ†Uχ†U〉} .

The modification may be absorbed in a suitable change
of the potentials that describe the mass terms contained
in the effective Lagrangian of order p4, which are given in
(42). Indeed, the effective Lagrangian does remain invari-
ant under the transformation (47), provided the effective
coupling constants contained in the potentialsW1 andW2
are modified according to

W1 → W1 +
λ

4B
V �
2 e

i(ψ+θ), (48)

W2 → W2 − λ

4B
V �
2 e

i(ψ+θ),

all other coupling constants remaining as they are. This
demonstrates that the general U(3) Lagrangian exhibits
the same kind of reparametrization invariance as the one
built on SU(3).
The modification of the potentials W1, W2, however,

is in conflict with the behavior of the theory at large Nc.
As discussed in detail in the preceding section, the effec-
tive Lagrangian represents a polynomial in the variable
ψ+ θ, at any order of the 1/Nc expansion – an immediate
consequence of the fact that the dependence of the matrix
elements on the vacuum angle is suppressed in the large
Nc limit. In view of the factor ei(ψ+θ), the changes required
in W1 and W2 violate this condition, already at leading
order. The disaster evidently originates in the phase fac-
tor e−iθ occurring in the Kaplan–Manohar transformation
(47): This factor is needed for the modified quark mass
matrix to transform in the same manner as the physical
one, but it introduces a dependence on θ that is in conflict
with the large Nc properties of the theory.
It does not come as a surprise that the Kaplan–

Manohar transformation breaks the Okubo–Iizuka–Zweig
rule: The transformation mixes different quark flavors. It
is to be expected that the parameter λ can at most be of
order 1/Nc. This also follows from the fact that the cou-
pling constant L6 picks up a term proportional to λF 2.
Since the counting rules imply that L6 represents a term
of O(1), while F 2 is of order Nc, the transformation can
be consistent with the large Nc properties of the theory
only if λ represents a term of order 1/Nc. The above anal-
ysis reaches much further: It shows that the parameter λ
vanishes to all orders of the 1/Nc expansion.

14 Renormalization
of the operators A0

µ and ω

As is well known, the dimension of the singlet axial cur-
rent is anomalous [30]. The operator A0

µ = q(1/2)λ0γµγ5q
must be renormalized for the correlation functions formed
with this current to remain finite when the cutoff is re-
moved. In particular, the one particle matrix elements
〈0|A0

µ|P 〉 = ipµF 0
P require renormalization: The singlet

decay constants F 0
π0 , F 0

η , F
0
η′ represent quantities like the

quark masses or the quark condensate – they must be
renormalized.
In the MS scheme, the renormalized quantities depend

on a running scale. To distinguish this scale from the one
used to renormalize the loop graphs of the effective the-
ory, we denote it by µQCD. There is a difference in that the
scale dependence of the quark masses shows up already at
leading order in the 1/Nc expansion, while the anomalous
dimension of the singlet axial current only manifests it-
self at next-to-leading order, because the triangle graph
responsible for the phenomenon contains an extra quark
loop.
The representation of the renormalization group only

interrelates operators with the same dimension and the
same Lorentz quantum numbers. Moreover, the matrix
elements of the representation exclusively involve those
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coupling constants that are dimensionless in the dimen-
sion of physical interest – the QCD coupling constant g
and the vacuum angle θ in the present case. In particular,
the representation is independent of the quark masses.
If these are turned off, the charges of the flavor group
SU(3)R×SU(3)L are conserved. The corresponding repre-
sentation on the set of field operators commutes with the
one of the renormalization group.
Since the axial singlet current does not have any part-

ners with the same Lorentz and flavor quantum numbers
and the same dimension, it transforms as a singlet under
the renormalization group. The operators qiRq

k
L form an ir-

reducible representation of the flavor group. As the theory
does not contain any other operators with these quantum
numbers and with the same dimension, the renormaliza-
tion is multiplicative also in this case,

A0 ren
µ = ZAA

0
µ, (qiRq

k
L)

ren = Zq̄qq
i
Rq

k
L. (49)

The renormalization of the singlet decay constants, for
instance, reads

F 0ren
P = ZAF

0
P , P = π0, η, η′.

The renormalization factors depend on the running scale
of QCD:

µQCD
dZA
dµQCD

= γAZA,

γA = −6Nf (N2
c − 1)

Nc

( g

4π

)4
+O(g6), (50)

µQCD
dZq̄q
dµQCD

= γq̄qZq̄q,

γq̄q =
3(N2

c − 1)
Nc

( g

4π

)2
+O(g4). (51)

The renormalization of the operator ω is more compli-
cated. As this field represents the variable conjugate to
θ, the issue is related to the dependence of the effective
action on the vacuum angle. This dependence is of crucial
importance for the analysis of the theory at large Nc. For
this reason, we now discuss it in detail.
The external fields may be viewed as space-time-depen-

dent coupling constants. The renormalization of the oper-
ators amounts to a renormalization of these “constants”.
In particular, if the vacuum angle is turned off, the effec-
tive action remains the same if we replace the bare op-
erators qiRq

k
L, q

i
Lq

k
R and A0

µ by the renormalized ones and
at the same time replace the bare external fields by the
quantities sren = Z−1

q̄q s, pren = Z−1
q̄q p, 〈aµ〉ren = Z−1

A 〈aµ〉,
while the vector field and the octet components of the ax-
ial field remain put – the corresponding operators do not
get renormalized.
To see what happens if the vacuum angle θ is turned

on, we exploit the fact that the natural parity part of the
effective action is invariant under the local U(3)R×U(3)L
transformations specified in (5). We denote the octet part
of the axial field by âµ ≡ aµ − (1/3)〈aµ〉 and replace s, p
by the combination

mθ = e
(i/3)θ(s+ ip), (52)

which is invariant under the transformations generated
by the singlet axial charge. Invariance under this sub-
group then implies that 〈aµ〉 and θ can enter the effec-
tive action only through the gauge invariant combination
Dµθ = ∂µθ + 2〈aµ〉,

Seff = Seff{vµ, âµ, Dµθ,mθ}. (53)

This shows that the functional Seff is known for arbitrary
θ(x) if it is known for θ(x) = 0: The general expression
is obtained from the one relevant for θ(x) = 0 by replac-
ing 〈aµ〉, s and p with (1/2)Dµθ, (1/2)(mθ + m†

θ) and
(i/2)(m†

θ −mθ), respectively. In particular, the quantities
Dµθ and mθ are renormalized according to

(Dµθ)ren = Z−1
A Dµθ, mren

θ
= Z−1

q̄q mθ. (54)

15 Renormalization of the effective action

For the effective action to remain finite when the cutoff is
removed, the Lagrangian must include all terms of mass
dimension less than or equal to four that are consistent
with the symmetries of the theory. This also applies to
contact terms, such as h0DµθD

µθ, h1〈RµνRµν +LµνL
µν〉

or h2〈m†m〉. The constant h1, for instance, is needed to
renormalize the QCD contributions to the electric charge.
It generates contact terms in the correlation functions of
the vector and axial currents. Together with the renor-
malization of the bare coupling constant g, the operation
ensures that all of the renormalized correlation functions
formed with the quark currents and with ω approach finite
limits,

Seff{vµ, âµ, Dµθ,mθ, g, h, µ0} =
Seff{vµ, âµ, (Dµθ)ren,mren

θ
, gren, hren, µQCD}. (55)

We have denoted the coupling constants associated with
the contact terms collectively by h and use the MS scheme
for the renormalized quantities. These are independent of
the cutoff µ0, but do depend on the running scale µQCD.
In the effective action, the running scale drops out – the
left hand side of the above relation is scale independent.
A priori, since θ is dimensionless, the representation of

the renormalization group might depend on this coupling
constant, too. As discussed above, however, θ is an inessen-
tial parameter in the sense that the manner in which the
effective action depends on it is fully determined by the
symmetries of the theory. In particular, the factors ZA
and Zq̄q are the same as for θ = 0. In fact, the renormal-
ization law for mθ shows that the vacuum angle is a scale
independent quantity – in agreement with the fact that
the effective action is periodic in this variable.
The renormalization law for Dµθ, on the other hand,

implies that the renormalization of the singlet axial field
is rather complicated: The effective action approaches a
finite limit only if, in addition to a multiplicative renor-
malization with the factor Z−1

A , the field 〈aµ〉 is simulta-
neously also subject to a U(1) gauge transformation by
the angle (1/2)(Z−1

A − 1)θ(x),
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〈aµ〉ren = Z−1
A 〈aµ〉+ 12(Z

−1
A − 1)∂µθ. (56)

The relation concisely specifies the renormalization of the
correlation functions involving the operator ω. In contrast
to A0

µ and q
i
Rq

k
L, for which the renormalization is multi-

plicative, ω is subject to an inhomogeneous renormaliza-
tion, despite the fact that the variable conjugate to it, the
vacuum angle, is renormalization group invariant.
The origin of the complication is readily understood:

It reflects the conservation law of the singlet axial current

∂µA0
µ = σ0 +

√
6ω, σ0 =

√
2
3
qiγ5mq (57)

(for simplicity, we identify s with the quark mass matrix
m and set p = 0). While ∂µA0

µ picks up a factor of ZA, the
term σ0 is invariant, because the quark mass matrix trans-
forms contragrediently to the operator qiγ5q. The matrix
element 〈0|ω|η′〉, for instance, may be represented as a
difference of two contributions. The first is proportional
to M2

η′F 0
η′ and thus scales with ZA, while the second is

given by the matrix element 〈0|σ0|η′〉, which does not get
renormalized.
In contrast to the operator ω itself, the zero momen-

tum projection thereof, the winding number ν =
∫
dxω,

is renormalization group invariant. The correlation func-
tions of this quantity may be obtained from the effective
action by considering a constant vacuum angle and tak-
ing derivatives with respect to it. The term proportional
to ∂µθ occurring in the renormalization of 〈aµ〉 is then
absent. Since the vacuum angle is invariant under renor-
malization, the same holds for the correlation functions of
ν.
To illustrate the statement, consider the topological

susceptibility of QCD

τQCD = −i
∫
dx〈0|Tω(x)ω(0)|0〉.

If s is identified with the quark mass matrix, the vac-
uum angle is taken constant and all other external fields
are switched off, the effective action reduces to Seff =
− ∫

dxε(m, θ), where ε(m, θ) is the vacuum energy den-
sity of QCD. The topological susceptibility is the second
derivative of ε(m, θ) with respect to θ. It can be rep-
resented in terms of the correlation function 〈0|Tσ0(x)
σ0(y)|0〉 and the quark condensate, by invoking the Ward
identities

∂µ〈0|TA0
µ(x)ω(y)|0〉 =

〈0|Tσ0(x)ω(y)|0〉+
√
6〈0|Tω(x)ω(y)|0〉

∂µ〈0|TA0
µ(x)σ

0(y)|0〉 =
〈0|Tσ0(x)σ0(y)|0〉+

√
6〈0|Tω(x)σ0(y)|0〉

−i 2
3
δ(x− y)〈0|qmq|0〉.

Since the left hand sides represent total derivatives, they
drop out when taking the integral over all of space. This
leads to the representation

τQCD =
i√
6

∫
dx〈0|Tω(x)σ0(0)|0〉

= − i
6

∫
dx〈0|Tσ0(x)σ0(0)|0〉 − 1

9
〈0|qmq|0〉.

The relation confirms the statement that the susceptibil-
ity is renormalization group invariant: Neither the corre-
lation function 〈0|Tσ0(x)σ0(0)|0〉 nor the term involving
the quark condensate, 〈0|qmq|0〉, depends on the running
scale of QCD.

16 Dependence of the effective coupling
constants on the running scale of QCD

We now translate these properties of the effective action
of QCD into the language of the effective theory. The fact
that the operators qiRq

k
L, A

0
µ and ω must be renormalized

implies that some of the effective coupling constants de-
pend on the running scale of QCD. Apart from contact
terms, the renormalization is fully determined by the fac-
tors ZA and Zq̄q – the coupling constant g is hidden in
the effective couplings. The contact terms h0, h1, . . . of
the QCD Lagrangian are absorbed in the coupling con-
stants H0, H1, . . . of the effective theory. The renormal-
ization of these couplings thus involves the renormaliza-
tion factors relevant for h0, h1, . . . In the following, we dis-
regard the contact terms altogether – they lead a life of
their own. Note that the present section concerns the scale
dependence of the effective coupling constants that arises
from the renormalization of the QCD Lagrangian. The
one generated by the logarithmic divergences that occur
within the effective theory is an entirely different issue (see
Sect. 17).
If the external fields 〈aµ〉 and θ are switched off, the

renormalization exclusively concerns s and p. For the gen-
erating functional of the effective theory relevant at fixed
Nc to become renormalization group invariant, the low en-
ergy constant B must be renormalized with Bren = Zq̄qB.
The scale dependence of this constant cancels the one
of the fields s(x) and p(x), so that the quantity χ =
2B(s + ip) is independent of the QCD scale. If the effec-
tive SU(3) Lagrangian is written in terms of this variable
[4], all of the coupling constants occurring therein, the
pion decay constant in particular, are invariant under the
renormalization group.
Let us now consider the extension to U(3) and include

the external fields 〈aµ〉 and θ, so that the natural par-
ity part of the effective action becomes invariant under
local U(3)R×U(3)L. The renormalization properties dis-
cussed in the preceding section do not rely on the large
Nc limit. It is therefore appropriate to return to the form
of the effective Lagrangian in (41), which does not invoke
the 1/Nc expansion. Inserting the decomposition (44), we
obtain (V4 = 0):

Leff = −V0 + V1〈DµŪ
†DµŪ〉+ V2e−(i/3)ψ̄〈Ū†χ〉

+ V �
2 e

(i/3)ψ̄〈χ†Ū〉+
(
1
3
V1 + V3

)
(∂µψ̄ −Dµθ)2

+ V5DµθD
µθ +O(p4). (58)



636 R. Kaiser, H. Leutwyler: Large Nc in chiral perturbation theory

The covariant derivative DµŪ involves the octet compo-
nents of the vector and axial fields, as well as the vacuum
angle. Neither one of these quantities undergoes renormal-
ization, but the singlet axial field in Dµθ = ∂µθ + 2〈aµ〉
does: In addition to a multiplicative renormalization, it
picks up a U(1) gauge transformation proportional to ∂µθ,
so that (Dµθ)ren = Z−1

A Dµθ. For the operation to map
the effective Lagrangian onto itself, the variable ψ̄ must
be renormalized in the same manner:

ψ̄ren = Z−1
A ψ̄, (59)

while Ū remains put. The Lagrangian then remains invari-
ant, provided the effective coupling constants are renor-
malized in such a manner that the potentials transform
with

V0(x)ren = V0(ZAx),
V1(x)ren = V1(ZAx),

V2(x)ren = V2(ZAx)e−(i/3)(ZA−1)x, (60)

V3(x)ren = Z2
AV3(ZAx) +

1
3
(Z2

A − 1)V1(ZAx),

V5(x)ren = Z2
AV5(ZAx).

We conclude that the effective Lagrangian is invariant un-
der the renormalization of the external fields specified in
Sect. 15, provided the dynamical variable U is subject to
renormalization: While the unimodular part remains in-
variant, the phase detU = eiψ transforms with

ψren = Z−1
A ψ + (Z−1

A − 1)θ. (61)

Expressed in terms of U , the renormalization thus
amounts to

U ren = ei(z/3)θ(detU)z/3U, z = Z−1
A − 1. (62)

We repeat that we are disregarding contact terms. The
above effective Lagrangian does contain such a term:H0 =
12V5(0). The renormalization of H0 involves the one of
the QCD counter term h0 and is not covered by the above
renormalization prescription for the potential V5. Except
for H0, the relations (60) do specify the renormalizations
of all of the effective coupling constants occurring to order
p2, in terms of the factors ZA and Zq̄q that characterize
the anomalous dimensions of the operators A0

µ and q
i
Rq

k
L.

The couplings collected in the potential V0, for instance,
are renormalized according to

V ren
0,k = ZkAV0,k.

For the constant τ ≡ 2V02, this yields

τ ren = Z2
Aτ. (63)

Note that the factor ZA differs from 1 only by a term of
order 1/Nc. As the triangle graph responsible for ZA does
not occur in gluodynamics, τGD does not get renormalized.
The transformation property of V1 = (1/4)F 2+O(x2)

shows that F is independent of the QCD scale – in agree-
ment with the fact that F represents the value of a physi-
cal quantity in the chiral limit. The constant B transforms

contragrediently to the quark mass matrix, Bren = Zq̄qB,
so that the lowest order mass formulaM2

π = (mu+md)B+
. . . does yield a scale independent pion mass. For the cou-
pling constants Λ1 and Λ2 the above relations yield

1 + Λren
1 = Z2

A(1 + Λ1), 1 + Λren
2 = ZA(1 + Λ2).(64)

The result shows that the renormalization of the effective
coupling constants is in general not multiplicative. This
reflects the fact that the individual terms of the series
L(0)+L(1)+. . . are not invariant under the renormalization
group. The leading term for instance contains the contri-
bution (1/12)F 2DµψD

µψ, which picks up a factor of Z−2
A .

A term proportional to DµψD
µψ also occurs in L(1). The

two contributions add up to (1/12)F 2(1 +Λ1)DµψD
µψ –

the renormalization of Λ1 indeed ensures that the sum is
renormalization group invariant. Likewise, the renormal-
ization of the potential V2 generates a term proportional
to Z−1

A − 1, which is absorbed in the renormalization of
Λ2. The renormalization group thus intertwines terms in
the effective Lagrangian that involve the same number of
derivatives and quark mass factors, but carry a different
power of Nc. This should barely come as a surprise – the
renormalization factor ZA itself represents an effect of the
type 1 + O(1/Nc). The renormalization of the nonlead-
ing couplings is not multiplicative, because it must cure
the deficiencies of the leading terms, so that the results
obtained on the basis of the first two terms in the 1/Nc

expansion of the effective Lagrangian do become renor-
malization group invariant to first nonleading order.
The remaining coupling constants of L(1) are renor-

malization group invariant, because the renormalization
of L(0) does not generate terms of order p4. They do,
however, give rise to specific nonmultiplicative renormal-
izations of the couplings occurring in L(2) (see Sect. 17).
Strictly speaking, the preceding discussion only shows

that the renormalization of the effective coupling con-
stants which we have just given is sufficient for the effective
action to be independent of the QCD scale. One may also
show that this renormalization is necessary – it suffices
to calculate a few observables within the effective theory.
The scale independence of the result indeed implies that
the effective coupling constants must be renormalized in
the above fashion [20].

17 Higher orders and loops

There is a significant difference between the U(3) frame-
work considered in the present paper and the standard
one, where the degrees of freedom of the meson field are
restricted to those of SU(3). In that case, the loop graphs
of the effective theory are relevant already at first non-
leading order. Now, they only matter if we wish to extend
the calculation beyond this order. As far as powers of mo-
menta are concerned, the series is of the same type in
the two cases: Momenta count like p ∼ δ1/2. The loop
graphs, however, are inversely proportional to powers of
Fπ ∼ N

1/2
c . While in the standard chiral perturbation se-

ries, graphs containing ' loops generate contributions of
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order p2�, they now only manifest themselves at order δ2�.
In particular, the one loop graphs yield contributions of
next-to-next-to leading order.
Numerically, the one loop graphs are of about the same

size as those occurring in the chiral perturbation series of
SU(3) – to count Fπ as a term of order N1/2

c does not
change the numerical value of this coupling constant. The
one loop graphs are relevant also if we wish to establish the
relation between the coupling constants occurring in the
two versions of the effective theory: The SU(3) coupling
constants depend on the running scale used to renormalize
these – we cannot make a significant comparison if we
ignore the loops. The evaluation of the one loop graphs,
however, poses a problem: Since these violate the OZI rule,
the divergences can be absorbed in a renormalization of
the effective coupling constants only if we include terms
of O(p4) that are subleading in 1/Nc.
A complete analysis of the contributions of next-to-

next-to leading order is beyond our scope. The correspond-
ing part of the effective Lagrangian contains a plethora of
terms of order Ncp

6, p4, p2/Nc and 1/N2
c , respectively.

The first category contains vertices of the same structure
as those occurring in the general SU(3) Lagrangian of or-
der p6, which are listed in [31]. For a complete set of terms
of order p4, we refer to [15]. As the one loop graphs of L(0)

represent contributions that involve at most four powers
of momentum, their renormalization only requires counter
terms that are at most of order p4. In other words, the cou-
pling constants of the type Ncp

6 are independent of the
running scale of the effective theory. Also, since the QCD
renormalization group preserves the Lorentz structure of
the various vertices, it can intertwine the couplings of L(0)

and L(1) only with those terms in L(2) that are at most of
order p4. In the following, we restrict ourselves to a small
subset of the couplings occurring at next-to-next-to lead-
ing order, the minimal set needed to satisfy the following
requirements:
(a) All of the couplings relevant for those quantities that
can be calculated within the framework of [4] are included.
This allows us to match the two versions of the effective
theory at one loop level and to express all of the SU(3)
coupling constants in terms of those occurring in the U(3)
Lagrangian.
(b) All contributions needed to absorb the divergences oc-
curring in the one loop graphs for the masses and decay
constants of the pseudoscalar nonet are included, so that
we can unambiguously account for those contributions of
next-to-next-to leading order that are enhanced by a chi-
ral logarithm. The terms required by (a) suffice to satisfy
this condition, except for one extra coupling. We retain
the numbering introduced in [15] and denote this term by
L18.
(c) The conditions (a) and (b) ensure that the result for
the decay constants is invariant under the renormaliza-
tion group of QCD (see Sect. 16). For this to be the case,
it is essential that the coupling constant L18 is included:
The renormalization group intertwines L5 with this term.
Likewise it intertwines L8 with a further extra coupling
constant, L25, which needs to be included for the masses

of the pseudoscalars to also become renormalization in-
variant.
The effective Lagrangian then contains the following

couplings:

L(2) =
(
L1 − 1

2
L2

)
〈DµU

†DµU〉2

+ L4〈DµU
†DµU〉〈U†χ+ χ†U〉

+ L6〈U†χ+ χ†U〉2 + L7〈U†χ− χ†U〉2 (65)

+ L18iDµψ〈DµU†χ−DµUχ†〉
+ L25i(ψ + θ)〈U†χU†χ− χ†Uχ†U〉.

As all of these terms represent contributions of O(p4),
the coefficients approach a finite limit when Nc → ∞.
The contributions involving L1 − (1/2)L2, L4, L6 and L7
correspond to those pieces of the SU(3) Lagrangian that
violate the OZI rule.
The divergences generated by the one loop graphs of

L(0) have been worked out in [15]. Expressed in terms of
the factor

λ =
µd−4

16π2

{
1

d− 4 − 1
2

(
ln 4π + Γ ′(1) + 1

)}
, (66)

the renormalization of the effective coupling constants re-
quired to absorb these divergences takes the form:

B = Br

{
1 +

4τ
F 4λ

}
, Ln = Lrn + Γnλ,

Hn = Hr
n +∆nλ. (67)

The constants F , τ , Λ1 and Λ2 do not get renormalized.
The main difference to the case of SU(3) is that loops in-
volving the propagation of an η′ require a renormalization
of the low energy constant B. The same graphs also gen-
erate a change in the values of the coefficients Γ6, Γ8 and
∆2:

Γ1 =
3
32
, Γ2 =

3
16
, Γ3 = 0,

Γ4 =
1
8
, Γ5 =

3
8
, Γ6 =

1
16
,

Γ7 = 0, Γ8 =
3
16
, Γ9 =

1
4
,

Γ10 = −1
4
, Γ18 = −1

4
, Γ25 = 0,

∆0 = 0, ∆1 = −1
8
, ∆2 =

3
8
.

These relations concern the renormalization of the effec-
tive coupling constants required to absorb the divergences
occurring within the effective theory – the dependence on
the renormalization scale of QCD is a different matter. For
the coupling constants of L(0) and L(1), we have discussed
the issue in detail in Sect. 16. That analysis is readily ex-
tended to the terms contained in L(2). We only give the
result:
(a) The coupling constants L1, L4, L6 and L7 are indepen-
dent of the QCD scale, also in the framework of U(3).



638 R. Kaiser, H. Leutwyler: Large Nc in chiral perturbation theory

(b) The constants L18 and L25 must be renormalized ac-
cording to

2L5 + 3Lren
18 = ZA(2L5 + 3L18),

2L8 − 3Lren
25 = ZA(2L8 − 3L25). (68)

This demonstrates that both L18 and L25 are needed to
arrive at a renormalization group invariant formulation of
the effective theory at next-to-next-to leading order.

18 Matching U(3) and SU(3)

The SU(3) framework applies if the quark masses and the
external momenta are taken small compared to the mass
generated by the topological susceptibility. Quantitatively,
the condition takes the form [17]

ms|〈0|uu|0〉| � 9τGD. (69)

In this region, we may use the straightforward expansion
in powers of momenta and quark masses also for the U(3)
theory, so that the two effective descriptions have a com-
mon region of validity, on which we can compare them.
As explicitly demonstrated in [22], the path integral

for the effective U(3) Lagrangian indeed reduces to the
one of SU(3) if the singlet meson field is integrated out.
The calculation is analogous to the one described in [4],
where the SU(3) effective theory is matched with the one
relevant for SU(2). Like in that case, loops involving the
propagation of light as well as heavy mesons require spe-
cial attention, because the momentum scale of these is
set by the heavy masses, while in the light sector, that
scale does not occur. We briefly sketch the essential steps,
referring to [22] for a more detailed discussion.
To match the two effective theories, we again use the

decomposition introduced in Sect. 12: U = ei(1/3)ψ̄Ū , ψ̄ =
ψ + θ. The phase factor explicitly exhibits the depen-
dence of U on the singlet field ψ and converts the relation
detU = eiψ into the constraint det Ū = e−iθ. The mapping
ensures that, under chiral rotations, Ū transforms in the
same manner as U . Expressed in terms of these variables,
the first term in L(0) takes the form

〈DµU
†DµU〉 = 〈DµŪ

†DµŪ〉
+
1
3
(∂µψ̄ −Dµθ)(∂µψ̄ −Dµθ).

In the common domain of validity of the expansions in
powers of p and δ, which is characterized by the inequal-
ity (69), the equation of motion implies that the field ψ̄
represents a term of order p2, so that we may expand the
expressions in powers of ψ̄.
At leading order, the matching reduces to a compari-

son of the classical actions. Collecting the relevant pieces
of L(0) and L(1), we find that the effective U(3) Lagrangian
reduces to

Leff =
1
4
F 2〈DµŪ

†DµŪ〉+ 1
4
F 2〈Ū†χ+ χ†Ū〉

+
1
12

{
H0 + F 2(1 + Λ1)

}
DµθD

µθ +O(p4).

In the notation used here, the leading order SU(3) La-
grangian of [4] reads3

LSU3
p2 =

1
4
F 2〈DµŪ

†DµŪ〉+ 1
4
F 2〈Ū†χ+ χ†Ū〉

+
1
12
(HSU3

0 + F 2)DµθD
µθ. (70)

Hence the two theories match at leading order, provided
the coupling constants F and B are the same in both
versions and the couplings H0 are related by

HSU3
0 = H0 + F 2Λ1 +O(1/Nc). (71)

In order to match the coupling constants of next-to-lead-
ing order, we need to perform the integration over the
field ψ̄, which describes the η′. The key observation here
is that L(0) contains the derivatives of this field exclu-
sively through the term (1/12)F 2(∂ψ̄−Dθ)2. This implies
that – if the vacuum angle and the singlet axial field are
turned off – only the vertices proportional to χ generate
loops involving the propagation of an η′. Accordingly, the
matching of the derivative terms is trivial: The coupling
constants F,L1, . . . , L5, L9, L10 and H1 are the same in
the two versions of the theory. For B,L6, L7, L8 and H2,
the matching conditions4 read [22]

BSU3 = B

{
1− 2M

2
0

3F 2 λ0 +O(N−3
c )

}
,

LSU3
6 = L6 +

1
72

(
λ0 − 1

32π2

)
+O(N−1

c ),

LSU3
7 = −F 4(1 + Λ2)2

288τ
+ L7 +O(N−1

c ), (72)

LSU3
8 = L8 − 1

12
λ0 +O(N−1

c ),

HSU3
2 = H2 − 1

6
λ0 +O(N−1

c ),

λ0 = λ
µ→M0

, M2
0 =

6τ
F 2(1 + Λ1)

.

The quantity M0 is the mass of the η′ in the chiral limit.
This mass sets the scale of the logarithm contained in λ0.
As a check, we note that in the expression for M0, the
dependence of Λ1 on the running scale of QCD cancels
against the one of τ , in agreement with the fact that the
mass of the η′ is renormalization group invariant, also in
the chiral limit (this is the reason for not expanding the
denominator in that expression). The difference between
BSU3 and B accounts for the fact that the latter picks up
a renormalization from the one loop graphs of the effective
theory, while the former does not.

3 In [4], the covariant derivative is defined as ∇µŪ = ∂µŪ +
i(vµ + aµ)Ū − iŪ(vµ − aµ). In view of (45), this amounts to
∇µŪ = DµŪ − (i/3)DµθŪ

4 Note that the low energy constants are independent of the
quark masses. The matching conditions do, therefore, not in-
volve Mπ, MK , Mη, but they do contain the mass scale set by
the topological susceptibility, which is related to the value of
Mη′ in the chiral limit
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The difference between the values of L6, L8, H2 in
the two versions of the effective theory is related to the
difference between the corresponding coefficients Γ6, Γ8,
∆2. Indeed, one may check that in the matching relations
between the renormalized coupling constants, the diver-
gences drop out. The coupling constant L7 is scale inde-
pendent in both versions. In the extended theory, L7 is
suppressed by the OZI rule, while LSU3

7 represents a term
of order N2

c . The leading contribution arises from η′ ex-
change and is inversely proportional to the square of the
mass of the η′ [4]:

LSU3
7 � − F 2

48M2
η′
.

According to (72), the first order correction to this formula
is determined by the OZI violating coupling constants Λ1
and Λ2:

LSU3
7 = − F 2(1 + Λ2)2

48M2
0 (1 + Λ1)

+ L7 +O(N−1
c ). (73)

The term L7 only enters as a correction of second order
in 1/Nc. Note that the dependence on the running scale
of QCD also cancels out here: The relation (64) shows
that the ratio (1+Λ2)2/(1+Λ1) is renormalization group
invariant.
In the present section we considered those couplings of

next-to-leading order that survive if θ and a0µ are turned
off – the effective Lagrangian of [4] only accounts for these.
As shown in Appendix B, the general expression of next-
to-leading order involves 11 additional terms. The match-
ing relations for the corresponding coupling constants are
also given there.

19 Anomalies

Above, we focussed on the natural parity part of the effec-
tive Lagrangian. The photonic decays π0 → γγ, η → γγ,
η′ → γγ, for instance, are not covered, because these
are contained in the unnatural parity part, which collects
those terms that involve the tensor εµνρσ. We now ex-
tend the above discussion to these and first consider the
anomalies, which we analyze by means of the differential
forms

v = dxµvµ, a = dxµaµ, r = v + a,

l = v − a, d = dxµ∂µ.

The quantities dx0,dx1,dx2,dx3 are treated as Grass-
mann variables. Their product yields the standard volume
element, dxµdxνdxρdxσ = εµνρσd4x.
The phase of the determinant of the Dirac operator is

not invariant under an infinitesimal U(3)R×U(3)L trans-
formation of the external fields,

VR = 1 + iαR, VL = 1 + iαL.

The part of the phase change that depends on the gluon
field is compensated by the transformation δθ = 〈αL−αR〉

of the vacuum angle. The remainder is unique only up to
contact terms formed with the external fields vµ, aµ and
θ. In the standard convention, it is invariant under the
transformations generated by the vector charges, so that
the change in the effective action is of the form

δSeff{v, a, s, p, θ} =
∫

〈(αL − αR)Ω〉.

An explicit formula5 for Ω was given in [32]:

Ω =
Nc

8π2

{
FvFv +

1
3
DvaDva

+
1
3
i(Fva2 + 4aFva+ a2Fv) +

1
3
a4

}
,

Fv = dv − iv2, Dva = da− iva− iav. (74)

The expression for Ω is not unique, however – in fact, the
one given is in conflict with the invariance of the effec-
tive action under the renormalization group. The prob-
lem arises, because the singlet component of the axial ex-
ternal field transforms in a nontrivial manner under this
group. The differential form a = dxµaµ consists of two
parts (compare Sect. 12),

a = ā+
1
6
Dθ. (75)

The first is renormalization group invariant and trans-
forms as a gauge field under chiral rotations. The second
transforms with (Dθ)ren = Z−1

A Dθ under the renormaliza-
tion group, but is invariant under U(3)R×U(3)L. Inserting
the decomposition in the expression for Ω, we obtain a
sum of three terms,

Ω = Ω0 +Ω1 +Ω2.

The first is obtained from Ω by replacing a with ā:

Ω0 =
Nc

8π2

{
FvFv +

1
3
DvāDvā

+
1
3
i(Fvā2 + 4āFvā+ ā2Fv) +

1
3
ā4

}
, (76)

where Dvā = dā − ivā − iāv. It is renormalization group
invariant. The remaining two terms are given by

Ω1 =
Nc

36π2 {Dvā〈da〉 − i(Fvā− āFv)Dθ},

Ω2 =
Nc

216π2 〈da〉〈da〉, (77)

and transform with Ωren
1 = Z−1

A Ω1, Ωren
2 = Z−2

A Ω2. If we
were to identify the anomaly of the effective action with Ω,
this functional would fail to be independent of the running
scale of QCD, in contradiction with (55).

5 The sign of Ω is convention dependent; we use the metric
+ − −−, set ε0123 = +1 and identify γ5 with γ5 = −iγ0γ1γ2γ3
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The problem is readily solved: The extra terms Ω1
and Ω2 represent the anomalies generated by two contact
terms,

P1 =
Nc

36π2 〈āDvā〉Dθ, P2 =
Nc

216π2 〈a〉〈da〉dθ. (78)

Removing these, the anomaly takes the renormalization
group invariant form

δSeff{v, a, s, p, θ} =
∫

〈(αL − αR)Ω0〉. (79)

Since the contact terms P1, P2 vanish for 〈aµ〉 = ∂µθ = 0,
they only matter when considering correlation functions
that contain the operators A0

µ, ω.

20 Wess–Zumino–Witten term

Within the effective theory, the anomalies are accounted
for by the Wess–Zumino–Witten term. The standard ex-
pression for this term reads [33]

SWZW{U, v, a} = − iNc

240π2

∫
M5

〈Σ5〉

− iNc

48π2

∫
M4

{W (U, r, l)−W (1, r, l)} ,

W (U, r, l) = 〈Ul3U†r +
1
4
UlU†rUlU†r

+ iUdllU†r + idrUlU†r
− iΣlU†rUl +ΣU†drUl
− Σ2U†rUl +Σldl +Σdll

− iΣl3 + 1
2
ΣlΣl − iΣ3l〉 − (R↔ L),

(80)

with U ∈ U(3) and Σ ≡ U†dU . The first term is an in-
tegral over a field U(x, x5) that smoothly interpolates be-
tween U(x, 0) = 1 and U(x, 1) = U(x). The Grassmann al-
gebra is supplemented with a fifth element dx5 and the in-
tegration extends over the five-dimensional manifold M5,
which represents the direct product of Minkowski space
with the interval 0 < x5 < 1. The integral is indepen-
dent of the particular interpolation chosen to connect U(x)
with the unit matrix. In the second term, the integration
only extends over Minkowski space, M4. The operation
(R ↔ L) requires an interchange of the 1-forms r and l
as well as an interchange of U and U†. By construction,
an infinitesimal chiral rotation of the variables U, v and a
generates the change

δSWZW{U, v, a} =
∫

〈(αL − αR)Ω〉, (81)

where Ω is the 4-form specified in (74).
For the reason given in the preceding section, we re-

move the contact terms P1, P2 and define the Wess–
Zumino–Witten part of the effective Lagrangian through∫

dxLWZW ≡ SWZW{U, v, a} −
∫
(P1 + P2). (82)

This ensures that the term LWZW accounts for the anoma-
lies of QCD in the renormalization group invariant form
(79):

δ

∫
dxLWZW =

∫
〈(αL − αR)Ω0〉. (83)

Note, however, that the term LWZW as such is not renor-
malization group invariant. Since the scale-dependent
pieces contained therein are gauge invariant (see
Appendix C), we could remove these and arrive at a scale
invariant expression. The drawback of such a choice is that
it interferes with the large Nc counting rules: As demon-
strated in the next section, our definition of LWZW is sin-
gled out by the property that it represents the leading
unnatural parity part of the effective Lagrangian.
We add a remark of general nature. TheWZW-Lagran-

gian is inherently ambiguous: The relation (82) specifies it
only up to a total derivative. We may, for instance, inden-
tify LWZW with what becomes of the right hand side if the
integration over Minkowski space is dropped, so that the
explicit expression consists of a one-dimensional integral
over x5 and a sum of local terms. The ambiguity then man-
ifests itself in the fact that, in contrast to the action, the
Lagrangian does depend on the particular interpolation
chosen to connect U(x, 0) = 1 with U(x, 1) = U(x). Also,
the Lagrangian is invariant under the vectorial subgroup,
VR(x) = VL(x), only up to a total derivative. Evidently,
the properties of LWZW are less transparent than those of
the corresponding action. The path integral relevant for
the effective theory, however, only involves the action, so
that the ambiguities inherent in LWZW are irrelevant.

21 Unnatural parity part beyond leading order

We denote the unnatural parity part of the effective La-
grangian by L̃eff . As we did not find a complete list for
the terms of order p4 in the literature, we briefly outline
the construction.
Once the WZW term is removed, the unnatural parity

part also becomes gauge invariant under U(3)R×U(3)L. It
is convenient to express the Lagrangian in terms of the
variables U , ψ̄, vµ, aµ, Dµθ and their derivatives. Terms
involving derivatives of ψ̄ can be integrated by parts. At
order p4, charge conjugation invariance then allows six
independent invariants (F̃µν ≡ 1

2ε
µνρσFρσ):

L̃eff = LWZW + Ṽ1i〈R̃µνDµUDνU
† + L̃µνDµU

†DνU〉
+ Ṽ2〈R̃µνULµνU†〉+ Ṽ3〈R̃µνRµν + L̃µνLµν〉
+ Ṽ4iDµθ〈R̃µνDνUU

† − L̃µνU†DνU〉
+ Ṽ5(〈R̃µν〉〈Rµν〉+ 〈L̃µν〉〈Lµν〉)
+ Ṽ6〈R̃µν〉〈Lµν〉+O(p6).

On account of parity, all of the potentials are odd functions
of ψ̄, except for Ṽ4, which is even.
In the 1/Nc expansion, the leading contribution to the

potentials Ṽ1, Ṽ2 and Ṽ3 is linear in ψ̄ and contains a cou-
pling constant of O(1), while Ṽ4 reduces to a constant that
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is also of this order. Since the remaining two terms involve
two flavor traces, their expansion starts at order 1/Nc.
This implies that the simultaneous expansion in powers
of p and 1/Nc is dominated by the WZW term, which
represents a contributions of order Ncp

4 = O(δ). The re-
mainder is of order δ2 or higher:

L̃eff = LWZW + L̃(2) + L̃(3) + . . . (84)

The general expression for the next-to-leading order La-
grangian contains contributions of the type p4 and Ncp

6.
The former can be extracted from the representation given
above:

L̃(2)
p4 = L̃1iψ̄〈R̃µνDµUDνU

† + L̃µνDµU
†DνU〉

+ L̃2ψ̄〈R̃µνULµνU†〉+ L̃3ψ̄〈R̃µνRµν + L̃µνLµν〉
+ L̃4iDµθ〈R̃µνDνUU

† − L̃µνU†DνU〉. (85)

At order Ncp
6, many invariants can be formed, in par-

ticular also terms proportional to the quark mass matrix.
Below we will discuss only a selection thereof: The terms
relevant in connection with the radiative transitions.
Note that LWZW is not independent of the scale used to

renormalize the singlet axial current. The scale-dependent
part is gauge invariant, but represents a contribution of
leading order in the 1/Nc expansion and must be retained
for the relation (84) to hold. As in the case of the natu-
ral parity part, renormalization group invariance thus re-
quires specific contributions of nonleading order. The phe-
nomenon arises from the fact that the loop graphs respon-
sible for the anomalous dimension of the singlet current
violate the OZI rule, which implies that some of the effec-
tive coupling constants contained in L̃(2) must compensate
for the scale dependence of LWZW. The relevant terms are
those of order p4, all of which were listed above. The de-
pendence of the coupling constants on the running scale
of QCD follows from the decomposition of the WZW term
given in Appendix C: The sum LWZW + L̃(2)

p4 is renormal-
ization group invariant to order δ2, provided L̃1, . . . , L̃4
are renormalized according to

L̃ren
1 = ZAL̃1 − κ, L̃ren

2 = ZAL̃2 − κ,

L̃ren
3 = ZAL̃3 − κ, L̃ren

4 = ZAL̃4 + κ,

κ =
Nc(ZA − 1)
144π2 . (86)

The quantity κ is of O(1), like the coupling constants
themselves.

22 Radiative transitions

As an illustration, we consider the radiative transitions
π0 → γγ, η → γγ, η′ → γγ [34]. At leading order, the
corresponding part of the effective Lagrangian is obtained
from the Wess–Zumino–Witten term with

r = l = −eQA,

where Q = diag {2/3,−1/3,−1/3} represents the charge
matrix of the light quarks and A = dxµAµ is the 1-form
associated with the electromagnetic field. Setting U = eiφ,
the terms linear in φ and quadratic in A reduce to

SWZW{U, v, a} = Nce2

8π2

∫
〈Q2dφ〉AdA

= −Ncα

4π

∫
d4x〈Q2φ〉FµνF̃µν .

Concerning L̃(2)
p4 , only the combination L̃2 + 2L̃3 of cou-

pling constants matters for the photonic transition matrix
elements. The net effect of the first order OZI violations
is that the trace 〈Q2φ〉 appearing in the WZW term is
replaced by

〈Q2φ〉 → 〈Q2φ〉+ 1
3
K1〈Q2〉〈φ〉,

with6 K1 = −48π2(L̃2+2L̃3)/Nc. The scaling laws for the
coupling constants L̃2, L̃3 imply that the renormalization
of K1 is of the same form as the one for Λ2:

1 +Kren
1 = ZA(1 +K1). (87)

One readily checks that this indeed compensates the
renormalization of the singlet field in (59), so that the re-
sult for the transition amplitude is renormalization group
invariant.
The Lagrangian L̃(2) contains two further categories

of contributions: Terms of O(Nc) with six derivatives and
chiral symmetry breaking effects of O(Ncmp4). We denote
these by L̃(2)

p6 and L̃(2)
χ , respectively. As far as the photonic

transitions are concerned, the first contains two indepen-
dent contributions, which may be written in the form:

L̃(2)
p6 = L̃5e2〈Q2φ〉Fµν F̃µν + L̃6e2〈Q2 φ〉FµνF̃µν .

Using the equations of motion, the second term can be
absorbed in the couplings occurring in L̃(2)

p4 and L̃(2)
χ . Since

the term with Fµν only matters for off-shell photons, we
can ignore this part of the Lagrangian altogether.
Finally, we consider the chiral symmetry breaking

terms. As only neutral mesons are involved, the matri-
ces φ,Q and χ = 2Bm commute, so that there is only one
independent invariant with a single flavor trace. We again
extract a normalization factor and denote the coupling
constant by K2:

L̃(2)
χ = −αNcK2

4π
〈Q2χφ〉FµνF̃µν .

The net result for the effective Lagrangian that describes
the photonic decays to first nonleading order thus reads:

LP→γγ = −αNc

4π

{
〈Q2φ〉+ 1

3
K1〈Q2〉〈φ〉

+ K2〈Q2χφ〉}FµνF̃µν . (88)

6 In [17] this coupling constant is denoted by Λ3 = K1
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The coupling constant K1 describes the corrections gen-
erated by the violations of the OZI rule and K2 accounts
for the breaking of chiral symmetry. While K1 represents
a term of order 1/Nc and depends on the running scale of
QCD according to (87), the constant K2 is of order 1 and
is renormalization group invariant.

23 Summary and conclusion

The effective theory of QCD with three colors is well
known. In that framework, the effective Lagrangian con-
sists of all terms respecting chiral symmetry. The chiral
perturbation series amounts to an expansion in powers of
momenta and quark masses. In the present paper, we have
examined the extension of this effective theory required
to analyze the low energy properties of QCD in the limit
where the number of colors, Nc, is treated as large. In that
case, the situation is more intricate, because there is an
additional low energy scale, related to the mass of the η′.
As discussed in detail, the standard expansion in powers
of momenta and quark masses, which we refer to as the p
expansion, cannot be used when Nc becomes large: In or-
der to coherently analyze the low energy properties of the
η′, the two quantities appearing in the η′-propagator – the
mass and the square of the momentum – must be treated
on equal footing. We exploit the fact that M2

η′ represents
a term of O(1/Nc), so that an expansion that counts p2,
m and 1/Nc as quantities of the same order does have the
desired property. We refer to the corresponding low energy
expansion as the δ expansion. It orders the triple series in
p = O(δ1/2), m = O(δ) and 1/Nc = O(δ) by collecting
terms that are of the same order in δ.
In the limit Nc → ∞, g2Nc fixed, the perturbative

analysis of QCD determines the order in 1/Nc of the vari-
ous correlation functions, according to (8). These counting
rules only hold for nonexceptional momenta. In particu-
lar, the low energy singularities generated by the Gold-
stone bosons (including the η′) give rise to contributions
that violate these rules. We have shown, however, that the
generating functional Seff{v, a, s, p, θ} does admit a coher-
ent expansion in powers of δ.
What we then discussed in some detail are the impli-

cations of this property of the generating functional for
the effective Lagrangian. The reason why this step is not
straightforward is closely related to the fact that the dy-
namical variables of the effective theory do not have phys-
ical meaning – their choice is inherently ambiguous. This
entails that statements about the effective Lagrangian can
only be true modulo a change in the dynamical variables.
What we were able to show is that there exists a class of
such variables, for which the coupling constants in the ef-
fective Lagrangian are at most of O(Nc). This is natural,
because the correlation functions collected in the gener-
ating functional obey the same bound. Furthermore, we
have shown that, like for the generating functional, the
dependence on the vacuum angle θ is suppressed in the
large Nc limit: At order δn, the effective Lagrangian is a
polynomial in θ, of degree n+ 2.

The outcome of our investigation boils down to a re-
markably simple construction recipe for the effective La-
grangian that holds to any given order in δ:
(i) Apart from the WZW term, the Lagrangian is mani-
festly invariant under local U(3)R×U(3)L transformations.
(ii) At order δn, the Lagrangian represents a polynomial
formed with the fields U , U†, s, p, Rµν , Lµν , ψ̄, Dµθ and
their covariant derivatives. The expression contains terms
that are at most of order p2n+2.
(iii) The coupling constant associated with a term in the
Lagrangian is of order N2−k

c , where k counts the num-
ber of traces plus the number of factors with ψ̄, Dµθ or
derivatives thereof (note that k ≥ 1).
In the text we explicitly give the expressions for the

Lagrangians of order 1 and order δ, but list only a selection
of the vertices occurring at next-to-next-to leading order,
for practical reasons: We expect the full Lagrangian of
order δ2 to contain about 100 terms.
We have also shown that the effective theory is consis-

tent with periodicity in the vacuum angle θ. This is not
evident, a priori, because the effective Lagrangian trun-
cated at a given order in δ is actually a polynomial in θ.
The paradox is resolved by observing that the periodicity
is not a necessary feature of the Lagrangian itself – only
the corresponding effective action needs to be periodic,
and this is the case.
A corollary of our results concerning the structure of

the effective Lagrangian is that the transformation of Ka-
plan and Manohar is forbidden at large Nc: For θ �= 0, this
transformation involves the vacuum angle through a fac-
tor e−iθ and thus generates a modification of the effective
Lagrangian with a nonpolynomial dependence on θ. This
is in conflict with the properties of the effective theory at
large Nc.
As is well known, the singlet axial current A0

µ car-
ries anomalous dimension and thus depends on the run-
ning scale of QCD. Moreover, the renormalization group
mixes the operators ω and ∂µA0

µ. In the effective action,
the corresponding external fields are the trace 〈aµ〉 and
the vacuum angle θ. We have shown that their renormal-
ization group properties follow from symmetry consider-
ations alone: While the vacuum angle is scale indepen-
dent, the singlet field 〈aµ〉 transforms inhomogeneously
under scale transformations and picks up a contribution
proportional to the gradient of the vacuum angle. We have
worked out the consequences for the dynamical variables
and coupling constants of the effective theory. In the lead-
ing order Lagrangian L(0), the coupling constant F is scale
independent, while B and τ are multiplicatively renor-
malized. Some of the fields contained therein, however,
transform inhomogeneously, so that L(0) does not remain
invariant when the running scale is varied. The origin of
the problem – the anomalous dimension of the singlet axial
current – is due to graphs of nonleading order. This implies
that the change in L(0) produced by a change of scale is an
effect of order 1/Nc and is eaten up by a suitable shift of
the couplings occurring in L(1), so that the effective action
does remain invariant. Quite generally, the action of the
renormalization group on the effective coupling constants
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occurring at a given order mixes these with the lower order
couplings. Physical quantities only involve scale indepen-
dent combinations of coupling constants, which are easily
identified.
In the remainder of the paper, we have extended the

analysis to the unnatural parity part of the Lagrangian
and have shown that the scale independence of the ef-
fective theory can be made manifest also in this sector.
At leading order, the unnatural parity part is given by
the Wess–Zumino–Witten term, which accounts for the
anomalies within the effective theory. The straightforward
extension of this term to the case of U(3)R×U(3)L, how-
ever, fails to be invariant under the renormalization group.
In part, the deficiency only concerns contact contributions
that are readily removed. The remainder still contains
scale-dependent contributions, but these are gauge invari-
ant, so that the modification produced by a change of the
running scale may be absorbed in the coupling constants
occurring at the next order of the expansion. The relevant
terms are those of unnatural parity at order δ2. We could
instead have modified the expression for LWZW, by adding
suitable gauge invariant pieces that make it scale indepen-
dent. This, however, would upset the large Nc counting
rules, so that the leading contribution in the δ expansion
of the unnatural parity Lagrangian would then not coin-
cide with LWZW.
To establish contact with the standard low energy the-

ory of QCD, we have given the explicit matching relations
between the low energy constants relevant at large and
at fixed Nc. We have also discussed the extension needed
to investigate singlet currents in the standard framework.
Some features, such as the dependence of the effective cou-
pling constants on the running scale of QCD apply to
both versions of the theory. Others do not: The Kaplan–
Manohar transformation, for instance, is in conflict with
the properties of QCD only if the number of colors is
treated as large – at fixed Nc, the effective theory is in-
variant under this operation.

A Construction of the effective Lagrangian

In the present appendix, we show how the reasoning of
Sects. 6–9 can be extended to construct the full effective
Lagrangian. As input we use the large Nc properties of
the Green functions of QCD. We first switch the quark
masses off and use the large Nc counting rules for the
scattering amplitudes of the pseudoscalar mesons. These
allow us to establish corresponding counting rules for the
interaction vertices of the effective Lagrangian. Then, we
generalize the argument to those vertices that describe the
response of the system to the perturbations generated by
the external fields and finally discuss the consequences of
the Ward identities of chiral symmetry.

Scattering amplitude at large Nc

If the number of colors is sent to infinity and the quark
masses are turned off, the spectrum of QCD contains nine

massless pseudoscalar mesons. The scattering amplitudes
describing the interaction of any number of these parti-
cles in the initial and final state can be extracted from
the connected correlation functions formed with the cor-
responding number of axial currents, using these currents
as interpolating fields. The correlation functions represent
quantities of order Nc, irrespective of the number of cur-
rents contained therein. In view of the fact that the one
particle matrix elements of the currents, 〈0|Aaµ|πb〉, are
of order N1/2

c , the scattering amplitude for n = ni + nf

mesons is at most of order N1−n/2
c .

The scattering amplitude contains singularities in the
low energy region. In particular, for n ≥ 6, it contains one
particle reducible contributions, describing a sequence of
collisions, connected by the exchange of single particles.
Denoting the number of exchanged particles by ', there are
'+1 irreducible parts. The number of meson lines entering
or leaving the irreducible parts adds up to n+2'. Applying
the counting rule to the irreducible parts, the resulting
contribution to the scattering amplitude represents a term
of order Nk

c , with k = ('+1)− (1/2)(n+2') = 1− (1/2)n.
This shows that the singularities generated by one particle
exchange manifest themselves already at leading order.
Unitarity relates the imaginary part to the square of

the scattering amplitude. The relation implies that this
amplitude contains further singularities. The exchange of
a pair of mesons (two particle intermediate states in the
unitarity relation), for instance, generates a branch cut in
the one particle irreducible parts. The contribution from
the two particle cut, however, only shows up at order
N

−n/2
c : If the two parts connected by the two exchanged
particles involve n1 and n2 mesons, respectively, we have
n1 + n2 = n + 4, so that the overall power of Nc is
given by (1− (n1/2)) + (1− (n2/2)) = −n/2. Exchanges
of more than two particles between the same irreducible
parts are suppressed even more strongly. This means that
the branch cuts required by unitarity only show up at non-
leading orders of the 1/Nc expansion. The leading order
contributions only contain those singularities that arise
from one particle exchange. Moreover, at leading order,
the one particle irreducible parts reduce to polynomials of
the momenta.
At leading order of the 1/Nc expansion, the structure

of the scattering amplitude is the same as the one of the
tree graphs of a pseudoscalar field theory. We identify the
dynamical variables with the dimensionless fields φ0(x),
. . ., φ8(x) introduced in (27) and represent the interaction
Lagrangian in the symbolic form

Leff =
∑
k,n

g(k, n)× ∂k × φn, (89)

where the flavor and Lorentz structure of the vertices is
suppressed. The integers k and nmerely count the number
of derivatives and fields occurring in the vertex in question
and g(k, n) represents the corresponding effective coupling
constant – in general, there are several, independent ver-
tices of the same symbolic structure. Lorentz invariance
implies that k is even.
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The terms quadratic in φ(x) are given in (22) and
(28). The corresponding coupling constants are g(0, 2) ∼
τGD = O(1) and g(2, 2) ∼ F 2 = O(Nc). For n > 2, the
coupling constant g(k, n) generates a tree graph contri-
bution to the one particle irreducible scattering ampli-
tude with n mesons. The contribution is of the symbolic
form g(k, n)pkF−n, where p stands for the momenta of the
particles. The comparison with the counting rule for the
scattering amplitude suggests that the coupling constant
g(k, n) can at most be of order Nc.

Freedom in the choice of the dynamical variables

Actually, the argument just given runs in the wrong direc-
tion: It only shows that if the Lagrangian exclusively con-
tains vertices of order Nc, then the corresponding scatter-
ing amplitude does obey the large Nc counting rule – the
converse is not true. A counter example can be constructed
as follows. As discussed in Sect. 7, the effective Lagrangian
is not unique, because its form depends on the choice of
variables. We may for instance subject the field U(x) to
the transformation U ′ = U exp if(ψ + θ). The operation
preserves the transformation law (24), irrespective of the
choice of the function f(x). We may choose one that grows
with Nc. Suppose that the coupling constants are of order
Nc and express the Lagrangian in terms of the new vari-
ables. The resulting expression describes the same physics,
but contains effective coupling constants that grow more
rapidly than with the first power if Nc becomes large.
The freedom in the choice of the dynamical variables

is related to the fact that, in the scattering amplitude, all
of the momenta are on the mass shell. It is well known
that different vertices may give rise to the same on-shell
matrix elements. The requirement that the on-shell ma-
trix elements of a given set of vertices reproduces certain
contributions occurring in the scattering amplitude only
fixes these matrix elements up to terms that vanish on the
mass shell of the colliding particles, p2i =M2

i . In the chiral
limit, eight of these are massless,Mi = 0, while the mass of
the ninth is given by Mη′ . The off-shell extension involves
an ambiguity of the form

∑
i(p

2
i − M2

i )ci(p1, . . . pn). In
coordinate space, this ambiguity corresponds to terms in
the Lagrangian that are proportional to the equation of
motion, which at leading order in the δ expansion of the
massless theory is of the form φ + τ̄〈φ〉 = h(φ), with
τ̄ = 2τ/F 2. The right hand side, h(φ), consists of a series
of terms that contain three or more fields.
This observation may be used to determine the ambi-

guity in the effective Lagrangian in an iterative manner.
Suppose that the tree graphs of Leff and L′

eff generate the
same on-shell scattering matrix elements. As discussed in
Sect. 7, we may choose the variables such that the terms
that are quadratic in the meson fields are the same, so
that the difference ∆L = L′

eff − Leff only contains ver-
tices with four or more meson fields. Suppose now that
the four particle scattering amplitudes generated by these
Lagrangians coincide. This property implies that, up to a
total derivative, the terms of order φ4 contained in∆L can
be written in the form

∑
k c(k)× ( φ+ τ̄〈φ〉)× ∂k × φ3.

We may replace φ + τ̄〈φ〉 with φ + τ̄〈φ〉 − h(φ), be-
cause the extra contributions contain six or more meson
fields. It therefore suffices to transform the variables in
L′

eff with φ → φ + F−2 ∑
k c(k) × ∂k × φ3: At order φ4,

the operation reduces the difference between the two La-
grangians to a total derivative. Since a change of variables
does not modify the physics, the new version of L′

eff yields
the same scattering matrix elements as the original one,
irrespective of the number of particles participating in the
collision. Iterating the procedure, we may extend this anal-
ysis to terms with an arbitrary number of fields. We con-
clude that the on-shell scattering matrix elements unam-
biguously determine the effective Lagrangian, except for
two inherent degrees of freedom: Choice of the dynamical
variables and total derivatives. The first reflects the am-
biguities occurring in the extension off the mass shell, the
second concerns the extension off the energy-momentum
shell.
We will fix the choice of variables when specifying the

explicit expressions for the first few terms of the deriva-
tive expansion. For the moment, we only exploit the fact
that there is a set of coupling constants g(k, n) = O(Nc),
for which the tree graphs of the effective Lagrangian do
reproduce the scattering amplitudes at leading order of
the 1/Nc expansion. This only excludes those transforma-
tions of variables that generate coupling constants growing
more rapidly than with the first power of Nc.

External fields

Let us now turn on the external fields. The above anal-
ysis is readily extended to this case. We again consider
the massless theory and use the symbol ji = qΓiq to de-
note any one of the quark currents. The large Nc counting
rules for the correlation functions of these operators were
given in Sect. 3. We first generalize this to matrix elements
between asymptotic states and consider

Gnjnωninf
= 〈f |Tj1(x1) · · · jnj (xnj )ω(y1) · · ·ω(ynω )|i〉c,

where |i〉 and 〈f | represent states with ni incoming and nf
outgoing mesons, respectively. The behavior of Gnjnωninf

at large Nc is established in the same manner as for the
scattering matrix: The matrix element is related to the
residue of the poles occurring in a correlation function
that, in addition to the operators listed, involves n = ni+
nf axial currents, which play the role of the interpolating
fields, while the operators j1(x1) · · ·ω(ynω ) are treated as
spectators. Denoting the contribution to Gnjnωninf

that
arises from graphs with ' quark loops by G�

njnωninf
, the

generalization of (8) reads

G�
njnωninf

= O
(
N

2−�−nω−(1/2)ni−(1/2)nf
c

)
,

' = 1, 2, . . . (90)

We may also check that, like in the case of the scatter-
ing amplitude, the singularities generated by one parti-
cle exchange manifest themselves at leading order, while
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the unitarity cuts only appear at nonleading orders. In
the large Nc limit, the one particle irreducible parts can
therefore again be expanded in the momenta.
The above counting rule shows that the matrix ele-

ments of all of the quark currents behave in the same
manner in the large Nc limit, while those of the opera-
tor ω(x) are suppressed. For the counting of powers rele-
vant at low energies, on the other hand, the external field
θ(x) counts as a term of order 1, vµ(x), aµ(x) = O(

√
δ)

and s(x), p(x) = O(δ). In the following bookkeeping, we
do not distinguish between vµ(x) and aµ(x), nor between
s(x) and p(x) and write the effective Lagrangian in the
symbolic form

Leff =
∑

e(k, kθ)×N2−kθ
c × ∂k × θkθ

+
∑

g(k, n, kv, ks, kθ)×N1−kθ
c

× ∂k × φn × vkv × sks × θkθ . (91)

The first sum accounts for the contributions generated
by graphs that do not contain quark lines. It represents
the effective Lagrangian of gluodynamics, which we dis-
cussed in Sect. 3. The integers k and kθ count the number
of derivatives and the number of times the external field
θ(x) occurs, respectively. In (12), that Lagrangian is writ-
ten in the form −N2

c e0(ϑ) + N2
c ∂

µϑ∂µϑe1(ϑ) + . . ., with
ϑ = θ/Nc. As we are now expanding in powers of 1/Nc,
the vacuum energy density N2

c e0(ϑ) is replaced by the se-
ries N2

c e0(0)+(1/2)θ
2e′′

0(0)+ . . . and likewise for the other
coefficients. The comparison shows that the coupling con-
stant e(k, kθ) is at most of order 1. On account of parity,
e(k, kθ) vanishes unless kθ is even. Disregarding the term
e(0, 0) = −N2

c e0(0), which merely contributes to the cos-
mological constant, the sum only starts at kθ = 2.
The second part of the effective Lagrangian arises from

graphs containing at least one quark loop. The integers k
and n count the number of derivatives and meson fields,
kv is the number of external vector and axial fields, ks
counts the scalar and pseudoscalar ones, while kθ is the
number of times the field θ(x) enters. As discussed above
in connection with the scattering matrix, the translation
of the counting rule for the matrix elements into one for
the vertices of the effective Lagrangian involves ambigui-
ties related to the freedom in the choice of the dynamical
variables. In the presence of external fields, that freedom
becomes even richer, because the variables φa(x) may be
subject to transformations that depend on these fields.
It suffices to observe, however, that the one particle irre-
ducible matrix elements are polynomials in the momenta,
so that their Fourier transforms represent a collection of
delta functions and derivatives thereof. We may simply
multiply this object with the relevant external fields and
add a factor of Fφa(x) for each one of the on-shell mesons.
Integrating all but one of the coordinates over space, we
obtain a specific representation for a term in the effec-
tive Lagrangian, for which the relevant tree graph does
reproduce the matrix element in question. The effective
coupling constants g(k, n, kv, ks, kθ) occurring therein are
the coefficients of the polynomial that describes the matrix
element. Their order in the 1/Nc expansion is determined

by the counting rule (90), which thus implies that, if the
effective Lagrangian is constructed in this manner, the
coupling constants g(k, n, kv, ks, kθ) are at most of order
1. The Lagrangian in (89) is what remains if all external
fields are turned off: g(k, n) ≡ Ncg(k, n, 0, 0, 0).

Chiral symmetry

We now consider the simultaneous expansion in powers of
momenta (or derivatives) and 1/Nc, introduced in Sect. 6.
The above symbolic expression for the effective Lagrangian
explicitly displays the number of derivatives, but only in-
dicates the leading power of Nc: The expansion of the
effective coupling constants in powers of 1/Nc starts at
O(1), but also contains terms of nonleading order. In the
following, we stick to this abbreviated notation. With the
assignments specified in (34) and (35), the general vertex
represents a term of order

N1−kθ
c × ∂k × φn × vkv × sks × θkθ = O(δκ),

κ =
1
2
(k + kv) + ks + kθ − 1.

Lorentz invariance implies that k+kv is even, so that only
integer powers of δ occur. Ordering the Lagrangian in this
manner, it takes the form

Leff = L(−1) + L(0) + L(1) + L(2) + . . . ,

where the term L(n) collects all contributions of O(δn).
Actually, as shown below, chiral symmetry implies that
the first term vanishes. The expansion only begins with
the term L(0), which collects the contributions of O(1).
Note that only a finite number of derivatives and external
fields can occur at any finite order in δ, so that the rele-
vant Lagrangian only involves a finite number of coupling
constants, like in the standard framework. In particular,
at O(δn), the dependence on the vacuum angle is a poly-
nomial of degree n+2. This feature reflects the fact that,
in the large Nc limit, the θ dependence is suppressed, both
in gluodynamics and in massless QCD.
As mentioned in Sect. 2, the Ward identities of chi-

ral symmetry are equivalent to the statement that the ef-
fective action is invariant under the U(3)R×U(3)L gauge
transformation of the external fields specified in (5). Note
that the transformation law only relates quantities of the
same order in δ. The effective Lagrangian can therefore be
gauge invariant only if this is the case separately for each
one of the terms L(n). In particular, the contributions of
order δ−1 must altogether represent a gauge invariant ex-
pression. Now, these arise from k = kv = ks = kθ = 0 and
thus only depend on the meson field. We may think of this
part of the effective Lagrangian as being a function of the
field U(x), which, moreover, does not involve derivatives
thereof, L(−1) = f(U). Invariance under U(3)R×U(3)L im-
plies that this function obeys f(VRUV

†
L ) = f(U). With

VL = U , VR = 1, this leads to f(U) = const. Hence L(−1)

only contributes to the cosmological constant and may be
discarded.
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It is convenient to replace the vacuum angle by ψ̄ =
ψ + θ and to use the fields U, v, a, s, p, ψ̄ and their deriva-
tives as independent variables – the Lagrangian L(n) is a
gauge invariant function thereof. Moreover, this function
is a polynomial in all variables except U . Note that only
the fields at one and the same point of space-time enter, so
that it is legitimate to treat the derivatives ∂µU, ∂µ∂νU . . .
as independent from U . Since ψ̄ by itself is invariant un-
der U(3)R×U(3)L, gauge invariance does not restrict the
dependence on this variable and its derivatives.
At leading order, the above counting rule permits five

independent invariants7: 〈U†DµDµU〉, 〈DµU
†DµU〉, 〈(s+

ip)U†〉, 〈(s − ip)U〉, ψ̄2. The first term differs from the
second only by a total derivative and can thus be dis-
carded. For the Lagrangian to be real, the coefficients
of 〈(s + ip)U†〉 and 〈(s − ip)U〉 must be complex conju-
gates of one another and parity then implies that they are
real. Hence the leading order Lagrangian contains three
independent coupling constants. The explicit expression
is given in (38).
It is straightforward to generalize this procedure to

find the expressions for the higher order Lagrangians. At
order δ, for instance, the relevant terms are those of order
p2 with two flavor traces and those of order p4 with one
trace. Using the equations of motion associated with L(0),
the Lagrangian of order δ may be brought to the form
given in (39).

B Full second order SU(3) Lagrangian

In [4], the effective Lagrangian relevant for the low en-
ergy analysis of matrix elements involving the winding
number density ω(x) or the singlet vector and axial cur-
rents V 0

µ (x), A
0
µ(x) was given only at leading order. In the

present appendix we briefly discuss the extension needed
to study these quantities to first nonleading order of the
p expansion. In the language of the effective theory, the
relevant extension is obtained by introducing three addi-
tional external fields, θ(x), 〈vµ(x)〉, 〈aµ(x)〉 and replacing
the symmetry group SU(3)R×SU(3)L by U(3)R×U(3)L.
The leading order SU(3) Lagrangian is given in (70).

At order p4, the terms listed in [4] can be taken over as
they are, simply replacing the variables U and ∇µU with
the quantities Ū and DµŪ , defined in Sect. 12:

LSU3
A = LSU3

1 〈DµŪ
†DµŪ〉2

+ LSU3
2 〈DµŪ

†DνŪ〉〈DµŪ†DνŪ〉
+ LSU3

3 〈DµŪ
†DµŪDνŪ

†DνŪ〉
+ LSU3

4 〈DµŪ
†DµŪ〉〈Ū†χ+ χ†Ū〉

+ LSU3
5 〈DµŪ

†DµŪ(Ū†χ+ χ†Ū)〉
+ LSU3

6 〈Ū†χ+ χ†Ū〉2
+ LSU3

7 〈Ū†χ− χ†Ū〉2
7 Note that the term 〈U†DµU〉〈U†DµU〉 involves two flavor

traces and thus only occurs at first nonleading order of the
expansion

+ LSU3
8 〈Ū†χŪ†χ+ χ†Ūχ†Ū〉

− iLSU3
9 〈R̄µνDµŪDνŪ† + L̄µνD

µŪ†DνŪ〉
+ LSU3

10 〈R̄µνŪ L̄µνŪ†〉
+ HSU3

1 〈R̄µνR̄µν + L̄µνL̄
µν〉+HSU3

2 〈χ†χ〉, (92)
where R̄µν , L̄µν denote the traceless parts of the right-
and lefthanded field strength tensors:

R̄µν = Rµν − 1
3
〈Rµν〉, L̄µν = Lµν − 1

3
〈Lµν〉.

In addition, chiral symmetry, parity and charge conjuga-
tion invariance permit 11 new couplings, containing the
covariant derivative of the vacuum angle or the field
strengths of the singlet external fields8:

LSU3
B = −iLSU3

11 Dµθ〈Ū†DµŪDνŪ
†DνŪ〉

+ LSU3
12 DµθD

µθ〈DνŪ
†DνŪ〉

+ LSU3
13 DµθDνθ〈DµŪ†DνŪ〉

+ LSU3
14 DµθD

µθ〈Ū†χ+ χ†Ū〉
− iLSU3

15 Dµθ〈DµŪ†χ−DµŪχ†〉
+ iLSU3

16 ∂µD
µθ〈Ū†χ− χ†Ū〉 (93)

+ iLSU3
17 εµνρσDµθ〈R̄νρDσŪ Ū

† − L̄νρŪ
†DσŪ〉

+
1
6
HSU3

3 〈Rµν + Lµν〉〈Rµν + Lµν〉

+
1
6
HSU3

4 〈Rµν − Lµν〉〈Rµν − Lµν〉
+ HSU3

5 (DµθD
µθ)2 +HSU3

6 (∂µDµθ)2.

Finally, the anomalies of the underlying theory require
an extra term that is not gauge invariant, but does not
involve any free constants. In the notation introduced in
(80), this term is given by∫

dxLSU3
WZW ≡ SWZW{Ū , v, ā}. (94)

The full effective Lagrangian of order p4 reads

LSU3
p4 = LSU3

A + LSU3
B + LSU3

WZW. (95)

Formally, the extension of the low energy analysis to the
matrix elements of the operators ω(x), A0

µ(x), V
0
µ (x) thus

nearly doubles the number of effective coupling constants.
Four of these, however, represent contact terms and a fifth
only concerns matrix elements of unnatural parity (note
that a coupling of this type does not occur in the La-
grangian of [4] – LSU3

17 only matters for matrix elements
that involve the winding number density or the singlet
axial current).
The inclusion of the scale-dependent field 〈aµ〉 implies

that some of the coupling constants must be renormal-
ized also in this version of the theory. The renormaliza-
tion procedure does, however, not entangle coupling con-
stants occurring at different orders in the expansion. In

8 In [35], only the coupling constants relevant for the two-
point functions were considered. For a corresponding list of
U(3) invariants, see [15]
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fact, in the above basis, the renormalization is homoge-
neous: In contrast to aµ, the field āµ is renormalization
group invariant. The constants LSU3

1 , . . . , LSU3
10 are there-

fore scale independent, while the remaining couplings pick
up a multiplicative renormalization that compensates the
one of the external fields,

(Dµθ)ren = Z−1
A Dµθ,

〈Rren
µν + Lren

µν 〉 = 〈Rµν + Lµν〉,
〈Rren

µν − Lren
µν 〉 = Z−1

A 〈Rµν − Lµν〉.

The renormalizations needed to absorb the infinities gen-
erated by the one loop graphs of LSU3

p2 may be worked out
as follows. The change of variables Û = e(i/3)θŪ takes that
Lagrangian into

LSU3
p2 =

1
4
F 2〈DµÛ

†DµÛ + Û†χ
θ + χ

θ
†Û〉

+
1
12
Ĥ0DµθD

µθ,

det Û = 1,

DµÛ = ∂µÛ − i(v̂µ + âµ)Û + iÛ(v̂µ − âµ),

where v̂µ and âµ are the traceless parts of the external
fields, χθ = e

(i/3)θχ and Ĥ0 = HSU3
0 + F 2. In this form,

the angle θ and the singlet axial field exclusively occur in
χ
θ and Dµθ, so that the one loop calculation of [4] can be
taken over as it is, simply replacing χ by χθ. In particular,
that calculation shows that divergences proportional to
the new terms do not occur, so that the corresponding
renormalization coefficients Γ11, . . . , Γ17 and ∆3, . . . , ∆6
all vanish.
The matching relations for the standard part LSU3

A of
the SU(3) Lagrangian are given in Sect. 18. These specify
the leading terms in the 1/Nc expansion of the coupling
constants LSU3

1 , . . . , LSU3
10 . For those in the part involving

the singlet external fields, the analogous relations read9

LSU3
11 = −4

(
L2 +

1
3
L3

)
+O(1),

LSU3
12 =

2
3

(
L1 +

1
2
L2 +

1
3
L3

)
+O(1),

LSU3
13 =

4
3

(
L2 +

1
3
L3

)
+O(1),

LSU3
14 =

1
3
(L4 + 3L5 + L18) +O(1),

LSU3
15 =

1
3
(2L5 + 3L18) +O(1),

LSU3
16 = −F 4(1 + Λ1)(1 + Λ2)(72τ)−1 +O(1),

LSU3
17 = Nc(288π2)−1 +

1
2
L̃4 +O(N−1

c ),

9 Note that the independence with respect to changes in the
chiral renormalization scale is not manifest in these equations
– the dependence of the coupling constants on the scale µ is
an effect of order N0

c and thus beyond the given accuracy

HSU3
3 = H1 +

1
2
L10 +O(1),

HSU3
4 = H1 − 1

2
L10 +O(1),

HSU3
5 =

1
9

(
L1 +

1
2
L2 +

1
3
L3

)
+O(1),

HSU3
6 = F 4(1 + Λ1)2(72τ)−1 +O(1). (96)

The coupling constants LSU3
16 and HSU3

6 receive a con-
tribution from η′ exchange, similar to the one in LSU3

7
(Sect. 18). The leading contribution to LSU3

17 stems from
the Wess–Zumino–Witten term of the extended theory
(Appendix C).
Note that, in the SU(3) framework, the Kaplan–

Manohar transformation (47) takes the mass term of the
effective Lagrangian into

〈Ū†χ〉 → 〈Ū†χ〉+ λ

4B
{〈χ†Ū〉2 − 〈χ†Ūχ†Ū〉} ,

even if the vacuum angle does not vanish: The factor e−iθ

is absorbed in the field Ū , on account of det Ū = e−iθ.
Hence the transformation of the quark mass matrix in
(47) is equivalent to a change of the effective coupling
constants occurring in LSU3

p4 , also for θ �= 0.

C Renormalization of the WZW term

We first observe that the field Ū introduced in (44) is
renormalization group invariant. Moreover, U and Ū
transform in the same way under chiral rotations, because
the factor that makes the difference, e(i/3)ψ̄, is invariant.
This immediately implies that the anomalies of the func-
tional SWZW remain the same if U is replaced by Ū . In-
deed, performing the above change of variables in (80), we
obtain a gauge invariant result for the difference:

SWZW{U, v, a} = SWZW{Ū , v, a}+
∫

A,

A = − Nc

144π2 ψ̄〈iFRDUDU† + FRUFLU
† + 2FR

2

+(R↔ L)〉,
FR = dr − ir2, FL = dl − il2,

with DU = dU − irU + iUl. The terms occurring here
are of the same form as those entering the U(3)R×U(3)L
invariant part of the effective Lagrangian.
Next, we decompose the axial field according to (75).

The corresponding decomposition of the right- and left-
handed gauge fields into a renormalization group invari-
ant part r̄, l̄ and a remainder reads r = r̄ + (1/6)Dθ,
l = l̄−(1/6)Dθ. Using the identity 〈dŪ Ū†〉 = −idθ, which
follows from det Ū = e−iθ, we then obtain

SWZW{U, v, a} = SWZW{Ū , v, ā}
+

∫
(A+B + P1 + P2),



648 R. Kaiser, H. Leutwyler: Large Nc in chiral perturbation theory

B =
Nc

144π2 iDθ〈F̄RDŪŪ† − F̄LŪ
†DŪ〉,

F̄R = FR − 1
3
〈FR〉, F̄L = FL − 1

3
〈FL〉.

Note that terms proportional to Dθ〈(DŪŪ†)3〉 cancel out
on account of charge conjugation invariance. The term
SWZW{Ū , v, ā} is renormalization group invariant. Under
chiral rotations, it transforms with

δSWZW{Ū , v, ā} =
∫

〈(αL − αR)Ω0〉.

The one with B is gauge invariant, but transforms with
Z−1
A under the renormalization group. The calculation au-
tomatically yields the contact terms P1, P2 introduced in
Sect. 19, which account for the difference between Ω and
Ω0 – these transform in a nontrivial manner, both under
the renormalization group and under chiral rotations. Fi-
nally, A may also be sorted out according to the behavior
under the renormalization group:

A = − Nc

144π2 ψ̄{〈iF̄RDŪDŪ† + F̄RŪ F̄LŪ
† + 2F̄ 2

R

+ (R↔ L)〉+ 1
2
〈FR + FL〉2 + 1

6
〈FR − FL〉2}.

This completes the decomposition of SWZW{U, v, a}. The
renormalization group invariant part is the Wess–Zumino–
Witten term relevant for the effective theory at fixed Nc:∫

dxLSU3
WZW ≡ SWZW{Ū , v, ā}. (97)

The extension to the degrees of freedom carried by the η′
contains the following additional contributions, which are
gauge invariant:

LWZW = LSU3
WZW − Ncε

µνρσ

288π2

{
ψ̄〈iR̄µνDρŪDσŪ

†

+ iL̄µνDρŪ
†DσŪ + R̄µνŪ L̄ρσŪ

†〉
+ ψ̄〈R̄µνR̄ρσ + L̄µνL̄ρσ〉
− iDµθ〈R̄νρDσŪ Ū

† − L̄νρDσŪ
†Ū〉 (98)

+
1
4
ψ̄〈Rµν + Lµν〉〈Rρσ + Lρσ〉

+
1
12
ψ̄〈Rµν − Lµν〉〈Rρσ − Lρσ〉

}
.
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